
Issue 12/June 2021

EXPLOITING QSEE,
The Raelize Way! >> 68

INSECURE LINK:
Security Analysis and

Practical Attacks of
LPWAN >> 50

How I Found 16 Microsoft
Office Excel Vulnerabilities

in 6 Months >> 85

MOVE OVER ROP:
Towards a Practical
Approach to Jump
Oriented Programming
>> 120

Featuring
WHITE PAPERS
from
HITB2021AMS!

X-IN-THE-MIDDLE:
Attacking Fast Charging
Piles and Electric
Vehicles >> 10

 iiiii

HITBMag | June 2021

ED
IT

OR
IA

L

H
ey guys - hope you’re all doing well despite the continued COVID
madness that’s still keeping us locked at home. We were hoping
we’d be able to have an in-person conference in Amsterdam in
May this year but it also looks like our upcoming Singapore event

in August is going to have to go fully virtual as well.

While we wait for vaccine rollouts and a return to some kind of normalcy
though, we’ve got a new edition of the HITB magazine to share with you
featuring whitepapers by #HITB2021AMS speakers! We’ve also revamped
the HITB Magazine landing page (https://magazine.hitb.org/) and given it a
lemony fresh skin. If you’re interested in submitting your own articles to our
next issue, send your proposals to us at editorial@hackinthebox.org (Note:
We only publish articles that are technical, so please don’t send us your
‘opinion pieces’.)

Despite our Singapore event being forced to go into virtual mode, we are still
working on an in-person HITB+ CyberWeek in UAE in November.

Taking place from the 21st till the 25th of November at the Abu Dhabi National
Convention Center, CyberWeek 2021 will feature our usual deep-knowledge
tracks, hands-on labs, and technical trainings but also an exclusive C-level
business track for governments as well as a combined .edu and PRO Capture
The Flag contest! Don’t worry if you can’t make it to the UAE in person though
- the event is designed to be hybrid and most of the talks, labs, and content
will be recorded or live streamed.

On behalf of the HITB Editorial Team, stay safe, get your vaccines (if you
haven’t already), and hopefully we’ll be chilling with you guys in November
at CyberWeek!

- The Usual HITB Suspects

https://magazine.hitb.org/
mailto:editorial@hackinthebox.org

CO
NT

EN
TS

Editoriali

A Disaster Caused by a Bug: A Black Box Escape of QEMU based on USB Device1

X-In-The-Middle: Attacking Fast Charging Piles and Electric Vehicles 10

Rebuilding Heaven’s Gate: From 32-Bit Hell to 64-Bit Wonderland26

macOS Local Security: Escaping the Sandbox and Bypassing TCC38

Insecure Link: Security Analysis and Practical Attacks of LPWAN50

Exploiting QSEE, the Raelize Way!68

How I Found 16 Microsoft Office Excel Vulnerabilities in 6 Months85

Client-Side Attack on Live-Streaming Services Using Grid Computing98

How Do Red Teams Attack Kubernetes in the Real World?108

Move over ROP: Towards a Practical Approach to
Jump-Oriented Programming120

POS World: Vulnerabilities within Ingenico Telium 2, Verifone VX, and
MX series Point of Sales terminals153

Hunting Bugs in Telegram’s Animated Stickers’ Remote Attack Surface172

Crowdstrike Detection Report: “TheZoo”184

 1

HITBMag | June 2021

A DISASTER
CAUSED

BY A BUG:
A black box escape of

QEMU based on USB device
Lingni Kong and Yanyu Zhang

ABSTRACT
Qemu is a machine emulator, dedicated to providing emulation of
different devices for cloud environments. Many exploits targeting
Qemu based on different vulnerabilities have been developed and
shown in public, yet all of them need some information about the
binary file. In this paper, we analyze the cause of CVE-2020-14364,
which is a memory out-of-bounds read and write vulnerability in the
USB device of Qemu, and introduce a new approach of realizing the
exploit without additional information based on this vulnerability.

 32

HITBMag | June 2021

INTRODUCTION

When virtualization technology acts

as the core of cloud computing today,

virtualization software including Qemu-

KVM, Hyper-V, Xen, Virtualbox, VMware

ESXi, equips on public and private clouds

widespread.

As the most popular open-source cloud

architecture, OpenStack uses Qemu-

KVM as the virtualization implementation

of its computing nodes. Therefore,

the threat of vulnerabilities in Qemu is

very noteworthy for the cloud platform

security.

Although Redhat fixes a large number

of vulnerabilities in Qemu every year,

most of them will not affect OpenStack

because they just exploit components

not provided by OpenStack. For example,

the vulnerabilities CVE-2015-5165 and

CVE-2015-7504 [1] presented at the

security conference HITB.

Even some serious vulnerabilities

affect OpenStack, such as CVE-2015-

3456(called the venom vulnerability [2].)

which is a heap overflow vulnerability in

the virtual floppy disk device. However,

no one is able to display a complete

exploit or relevant idea publicly.

As the above mentioned, there are only

a few vulnerabilities that can be used

to escape from the OpenStack virtual

machine. It’s more challenging to develop

an exploit for virtual machine escape in

the public cloud since it is difficult for an

attacker to obtain the key information

such as Qemu version, binary files, and

so on.

Thus, when we view as an attacker

targeted on public cloud instruments,

not only considering the exploitable of

vulnerability or stability of the method,

it’s more vital to escape the affected

virtual machine without any additional

information.

In this paper, we briefly introduce the

Qemu-KVM architecture at first, then we

interpret a new conception: black box

escape. After analyzing a vulnerability

(CVE-2020-14364) impacted cloud

security profoundly, we present our

approach to achieving a black box

escape of a Qemu virtual machine based

on this vulnerability. Finally, we give some

inspirations via our experience.

BACKGROUND

Qemu-KVM

Qemu is a machine emulator that can

simulate different architectures or a

complete virtual machine including

processor virtualization [3], memory

virtualization, and I/O device virtualization.

What’s more, Qemu uses different

accelerators to accelerate the simulation

process, and KVM is one of them. KVM is

responsible for realizing the virtualization

of CPU and memory in the kernel mode

by loading new modules on the Linux

kernel [5].

So, while the system is initializing

and simulating, Qemu only assure to

implement the virtual hardware in the

user mode. The architecture of Qemu-

KVM improves the performance of

system virtualization significantly.

Virtual machine escape

The significance of virtual machines is

to serve an isolating virtual operating

environment. And its isolation

mechanism makes sure that different

virtual machines do not interfere with

each other or when the virtual machines

share host resources, their operations

will not disrupt host OS.

Nevertheless, virtual machine escape

can be exploited to execute malicious

code, which makes the program break

away from the virtual machine [4], even

attack the host OS, or obtain the host’s

related permissions.Due to the privileged

status of the host OS, the escape of the

virtual machine could lead to a serious

consequence from attacking the host OS

and collapse the entire security system.

Therefore, the threat of virtual machine

escape to system security is self-evident.

The virtual machine escape attack can

be traced to 2007, but the relatively

au-hortative concept was proposed by

Ken Owens until 2009. From the record

and analysis by CVE corporation, the

vulnerability of virtual machine escape

still increases year by year.

Nowadays, virtual machine escape

vulnerabilities have been discovered

from all major virtualization software

platforms: As early as 2009, a vulnerability

in SVGA devices on VMware virtualization

platform can realize virtual machine

escape; In 2016, researchers achieved

Xen escape through a vulnerability in

virtual memory management.

Black box escape is a new conception

we propose after summarizing the

characteristics of our exploit approach.

In fact, ’black box’ in the conception is

similar to the sense of black-box testing:

black-box testing can test software

functions without getting the internal

structure and code of the program.

Similarly, black box escape means

that an attacker can escape from a

virtual machine without binary symbol

information. As compared to the normal

methods which need load address and

system address from Glibc, black box

escape makes attacking public cloud

directly possible.

Qemu USB support

Before analyzing the vulnerability CVE-

2020-14364, a general comprehension

of how does USB data transfer and how

does Qemu virtual device process the

USB data packets is necessary.

In the Linux kernel, the driver sends the

USB data and the structure containing

information to the USB device by parsing

the urb (USB request block) structure.

The related structure plays a role to

describe the specific information of data,

including the length, type, and address

of the USB device for sending or reading

the data on the bus.

The corresponding controllers of usb1.0,

usb2.0, and usb3.0 are all simulated by

Qemu. The driver in guest OS sends

USB packets by reading and writing the

registers of the corresponding device.

For example, we can send a UHCI_

TD structure to the device by reading

and writing the registers of the usb1.0

default controller UHCI. The UHCI_TD

structure describes the type, length, and

other information of the data we want to

transmit.

Libvirt is a toolkit to manage virtualization

platforms, which is used in OpenStack.

For each virtual machine created by

default, libvirt provides a USB-tablet

device on the usb1.0 or usb2.0 bus to

 54

HITBMag | June 2021

solve the bug of mouse synchronization.

The connection method of the USB

device will not have any impact on our

exploit since the unique position of

CVE-2020-14364. So, exploit can easily

adapt to platforms based on different

connection methods by only modifying

the sending method of USB packets.

VULNERABILITY

Under normal circumstances, the driver

sends and receives USB packets to the

control endpoint as figure 1 shows:

1. The driver sends an 8-byte

TOKEN_SETUP type data

packet. The front six bytes

contain control information,

and the last two bytes are

combined to show the length

of the data the driver wants to

read or write.

2. When the driver wants to read

the control information of some

USB devices, the driver will

send another TOKEN_IN USB

packet matching the length

to read the corresponding

control information.

3. When the driver wants to set

the control information of

some USB devices, the driver

will send another TOKEN_

OUT USB packet matching the

length to set the corresponding

control information.

CVE-2020-14364 is a memory out-of-

bounds read and write vulnerability. It

exists in function do_token_setup in

the hw/usb/core.c file. This function will

process the USB SETUP packet sent to

the control endpoint.

As shown in Figure 2 below, the sixth

and seventh bytes of setup data are

combined in a 16-bit integer, and the

integer is assigned to the setup_len in

the USBDevice structure.

When the setup_len is too large then

make the check fail, do_token_setup will

exit directly without clearing the setup_

len value. This causes the setup_len of

USBDevice illegal when processing the

next data packet.

So it’s possible to construct this error

process as memory out-of-bounds read

and write as Figure 3 shows.

1. The driver sends an 8-byte
TOKEN_SETUP type data
packet, which indi-cates that
the driver wants to read the
controlw information of the
USB device. After the execution
of do_token_setup, the setup_
state of the USBDevice will be
set to SETUP_STATE_DATA.

2. The drive sends an 8 bits
TOKEN_SETUP USB packet
again. Compared with the
content sent at the first
time, only the last two bytes
representing the length are
modified, which will trigger the
error we mentioned above:
the function do_token_setup
will set setup_len to an illegal
size before exiting, meanwhile
setup_state is still SETUP_
STATE_DATA.

3. At this time, as Figure 4 shows,
if we send a large number of
TOKEN_OUT USB packet, there
will be an out-of-bound write of
data_buf in function do_token_
out.

In the same way, we can perform an

array reading out-of-bounds operation

on data_buf through similar operations:

1. The driver sends an 8-byte
TOKEN_SETUP type data
packet, which indicates that
the driver wants to read the
control information of the USB
device. After the execution
of do_token_setup ends, the
setup_state of the USBDevice
will be set to SETUP_STATE_
DATA.

Figure 2: A code snippet of do_token_setup()

Figure 1: A set of normal data packets for

reading and writing USB control endpoint.

Figure 3: A set of data packets used to trigger

out-of-bounds read and write vulnerabilities.

Figure 4: A code snippet of do_token_in() and

do_token_out().

 76

HITBMag | June 2021

2. The driver sends an 8-byte
TOKEN_SETUP type data
packet again. Compared with
the content sent for the first
time, only the last two bytes
representing the length are
modified, which triggers the
error we mentioned above.
In this way, when exiting the
do_token_setup function, do_
token_setup will set the setup_
len to an illegal size while the
setup_state is still SETUP_
STATE_DATA.

3. At this time, as Figure 4 shows,
if we send a large number of
TOKEN_IN USB packet, there
will be an out-of-bound read of
data_buf in function do_token_
in.

We can use the above two methods to

convert the bug into a continuous out-

of-bounds read and write to data_buf of

USBDevice.

BLACK BOX ESCAPE

Combined the vulnerability with structure

of the USBDevice, we build two primitives:

1. Arbitrary offset memory read

and write primitive after data_

buf. Based on the vulnerability

triggering method mentioned

above, we are able to do

continuously out-of-bound

read and write to the data_buf

of USBDevice. As Figure 5

shows, the related variables

setup_state, setup_len and

setup_index used for out-of-

bounds read and write are all

after data_buf. We build this

primitive by triggering this

vulnerability and modifying

these three variables.

2. Arbitrary read primitive. The

driver gets the vendor id and

product id of the USB device

by sending a series of packets.

As shown in Figure 6, these

two types of id are stored in

the USBDesc structure, which

is pointed to by usb_desc of

USBDevice. The usb_desc

structure pointer is located at

a fixed offset after data_buf.

Therefore, we construct an

arbitrary address reading

primitive by changing the usb_

desc structure pointer to the

memory address we want to

read, and reading the vendor

id and product id of the USB

device through a series of

packets.

By using these two primitives, we realize black box escape through two steps:

1. Libc relevant address leakage. In the USBDevice, different endpoints are de-

scribed by USBEndpoint. As shown in Figure 7 (below), USBEndpoint has a

pointer pointed to the USBDevice and it’s also behind the memory of data_

buf. There is a DeviceS-tate structure stored at the head of the USBDevice

which has many function pointers. ObjectFree is one of them which is used to

release the Object structure. It points to the free function of a certain library.

Since all final implementation of free for all library functions is in Glibc

of Linux and the free implementation of other libraries is just a jump

instruction in the plt segment, we get the address of free of Glibc by

repeating parsing the jump instruction and reading the GOT table.

Once we get the address of free of Glibc, we search the memory and

get the address of the system of Glibc as dynELF [6] does. We search for

the location of the Glibc ELF head by matching the magic number of the

ELF head first. After getting it, we find the system string by traversing

the .dynstr section in the ELF and read the same offset of the .dyn section

to get the offset of the system function. After pulsing the base address of

Glibc, we finally get the address of the system function in the memory.

Figure 6: Relationships between USBDevice and USBDesc.

Figure 7: Relationships between the structures we used to leak the address of free

functionFigure 5: Some members of USBDevice.

 98

HITBMag | June 2021

2. Hijack control flow. The driver set the free time of usb-tablet through SET_IDLE
control command. The realization of this function in Qemu is to set a timer
and call the hid_idle_timer function after the timeout. The hid_idle_timer
function will eventually use a function pointer of HIDState to handle the event.

As shown in Figure 8, the HIDState structure is a part of USBHIDState, and
the offset relative to the data_buf array is fixed, so we hijack the control
flow by overwriting the event function pointer in the HIDState structure.
We are also able to control the first argument of the function pointer by
overwriting the start position of the HIDState structure. Finally, we send
SET_IDLE control command to trigger the call of the event function.

DISCUSSION

Impact

The vulnerability CVE-2020-14364 was independently reported to RedHat by 360 security

researcher Xiao Wei and Qi Anxin security researcher Zhang Ziming. Redhat fixed the

vulnerability on August 24, 2020. This vulnerability affects all versions of Qemu between

1.0 and 5.1.0. Triggering the vulnerability requires at least one USB device connected to

the virtual machine.

Defence

It’s of concern to deploy a sandbox on Qemu process for defending CVE-2020-14364.

Figure 8: Relationships between the structures we used to hijack control flow.

CONCLUSION

In the past few years, there have been some high-

quality vulnerabilities in Qemu. But currently, there is no

vulnerability that can achieve a black box escape Qemu

virtual machine through a single vulnerability like CVE-

2020-14364. What’s more concerning is that the range

of versions affected by the vulnerability is very large, and

for different versions, the method of exploitation does not

require any modification at all.

For cloud vendors, this vulnerability is an important

warning. The emergence of black box escapes means that

some vulnerabilities can pose serious threats even in the

absence of binary files. It also means that it is necessary to

set a certain sandbox strategy for the Qemu process. After

all, we should never put all eggs in a basket. □

ACKNOWLEDGMENT

We would like to thank Haipeng Qu and Hanqing Zhao for

constructive suggestions in the paper writing.

REFERENCES

[1] Xu Liu,Shengping Wang.”Escape From The Docker-KVM-

QEMU Machine.” Hitbsecconf2016:https://conference.hitb.

org/hitbsecconf2016/sessions/escape-from-the-docker-

kvm-qemu-machine/.

[2] “VENOM Vulnerability”. venom.crowdstrike.com.

Retrieved 2018-12-07

[3] Fabrice Bellardet.al.QEMU,2019:https://www.qemu.

org/.

[4] Baliga, Arati, Liviu Iftode, and Xiaoxin Chen. “Automated

containment of rootk-its attacks.” Computers Security 27.7-

8 (2008): 323-334.

[5] Datta, Shamanna M, et al. “Hardware protection of

virtual machine monitor run-time integrity watcher.” U.S.

Patent No. 9,566,158. 14 Feb. 2017.

[6] https://docs.pwntools.com/en/stable/dynelf.html

 1110

HITBMag | June 2021

INTRODUCTION
EV CHARGING

The rapid expansion of the electric vehicle market has promoted the construction of

charging infrastructure.DC charging has higher charging power, and in order to confirm

the charging voltage and current, the electric vehicle and the charging station will

communicate after being connected.

-IN-THE-MIDDLE
Attacking Fast Charging Piles and

Electric Vehicles

Wu HuiYu and Li YuXiang

Figure 1: AC VS DC Charging

X

 1312

HITBMag | June 2021

There are different charging standards in different country. For example, all electric cars

in China must support the GB/T standard. Electric car use CAN-BUS to communicate with

charging plies, while in most parts of Europe, CCS standards are used, and Electric cars

and charging piles use PLC to communicate. with the exception of Tesla, who has its own

Supercharger network all over the world, and it uses a private communication protocol.

In addition, we also want to talk about why we chose to study the electric charging

security. The main reason is that we found Electric vehicles infrastructure is making

progress towards a more intelligent, more high-power direction.

The construction of charging stations is accelerating all over the world, but there is little

research on the security of electric vehicle infrastructure.

ATTACK SURFACE ANALYSIS

First of all, EV Charging piles are also Internet of things devices, which usually have built-

in intelligent systems and operating interfaces, while facing security risks in hardware,

systems, cloud services and communications.

But our focus is on the security of the communication protocol between the electric

vehicle and the charging pile.This will be a new and interesting exploration.

The following picture shows the process of charging a car at a DC charging station,

Charge controller communicates with BMS before charging to confirm parameters such

as charging voltage and current, which involves a lot of data exchange.

Table 1 Charging Standards

So, if we can implement a man-in-the-middle attack, we might be able to

1. Find Vulnerabilities in BMS and Charge controller through Fuzzing;

2. Analyze private protocols and bypass identity authentication mechanism;

3. Damage the car by tampering with the charging voltage and current.

WHAT IS “X-IN-THE-MIDDLE” ATTACK?

In order to conduct security testing safely and conveniently, we have designed a tool

called XCharger. The core of XCharger is a data processing terminal based on STM32MCU

or raspberrypi, which isolates CAN-BUS messages from BMS and charging posts. All

CAN-BUS messages can not be transmitted normally until they are transferred through

XCharger, which allows us to monitoring, fuzzing and tampering CAN-BUS messages in

the whole charging process.

Another feature is that we designed the whole tool into a 20-inch suitcase, which has

two charging sockets, one is connected to the charging pile, the other is connected to

the electric vehicle, the high-voltage circuit is directly connected, and only four CAN-

BUS communication interfaces are exported to ensure high-voltage safety.

Figure 2 DC Charging’s Arch

Figure 3 X-in-the-Middle Attack

 1514

HITBMag | June 2021

When we do security research, the most

important thing is It should be able to

ensure that personal safety and vehicle

safety are not threatened in the test. DC

charging can reach a voltage of up to 750V

or a current of 120A. Once a short circuit

occurs, it is very dangerous for the tester

and the car.

Secondly, we hope that the attack

equipment should be highly compatible,

suitable for all electric vehicles with

Chinese DC charging standard. Instead of

requiring customization for each brand of

electric cars or charging piles.

We also found CAN-BUS communication

requires low latency, and man-in-the-

middle attacks need to ensure that frames

will not be drop. (Fig 4)

We rented a tesla model3 for testing and

found that its charging port exported the

CAN-BUS bus interface with a separate plug.

This meant we might be able to disconnect

the original connection in the trunk to achieve

a man-in-the-middle attack, but the problem

is that this may lead to line damage, which

does not seem suitable for such an operation

on a rented vehicle. (Fig 5, 6)

Figure 4: GB/T DC Charging Gun

Figure 6: Tesla Model3’s Charging Model

A perfect solution we have

is the equipment shown

(Fig 7). You can see that

it has two charging ports,

one end is connected to

the electric vehicle, the

other end is connected to

the charging connector,

the CAN-BUS interface

of the BMS of the electric

vehicle, and the CAN-BUS

interface of the charging

pile are all exported on

the surface.

Simultaneously, we have

customized a dual-plug charging

cable (Fig 8) to connect the

equipment and the car, this

equipment is designed by us

and made by professional

manufacturers in Shenzhen, China,

which can ensure the safety of

high-voltage power use.

There are many open source tools

available for CAN-BUS’ monitoring,

fuzzing and tampering, to use

both raspberrypi and two-way

CAN extension boards. We can

use Python to develop a testing

framework on the built-in ubuntu

system. Due to the limited time, we

will release more details and code

in the future.

Figure 5: Tesla Model3’s Charging Model’s data

cable

Figure 8 Dual-plug charging cable

Figure 7 XCharger Kit

 1716

HITBMag | June 2021

We use XCharger to do a quick test on the Tesla supercharger in China, and the test

results verify that the device can capture the message successfully, but we do not have

any more tests because we do not have the Charging port’s DBC file to translate the CAN-

BUS message.

We found that some of the messages in the CAN-BUS communication between

SuperCharger and Tesla Model3 use private protocols. Some messages conform to the

GB/T 27930 standard. When testing with Model3, there is a high probability that it will not

be able to charge successfully. The reason is still being analyzed. So if you want to reverse

the complete protocol, it may be better to analyze the firmware of BMS or SuperCharger.

Figure 9 RaspberryPi and two-way CAN extension boards.

Figure 10 Quick test on the Tesla Supercharger

HOW TO ATTACK “PLUG AND CHARGE”

In addition to the Tesla Supercharger, we spend more time in public charging stations.

Plug and Charge is a new way of automating payment for EV charging. Users do not

need to swipe their cards or scan codes, just connect the charging pile to the vehicle

charging port to automatically complete identity authentication and payment.

For electric vehicle companies that build their own charging piles, such as Tesla, private

communication and authentication protocols can be used to ensure the security of “Plug

and Charge”.

Considering compatibility and cost, some public charging station operators have chosen

to use VIN to complete vehicle identity authentication on the basis of GB/T 27930

standard. Operators do not realize that VIN is not a security identification in insecure

CAN-BUS communication.

GB/T 27930 is the Chinese standard for electric vehicle battery charging. Cable charging

standard GB/T 27930 is based on the SAE J1939 network protocol and uses the CAN

bus with a point-to-point connection between the charger and the battery management

system. A transmission rate of 250 kbit per second is used by default.

Table 2 Private protocol of SuperCharger

 1918

HITBMag | June 2021

Charging communication involves both the battery management system and the charger

agreeing on the power requirements of the vehicle and both the amperages and voltages

used during charging, as well as monitoring the charging process. With the GB/T protocol,

communication is divided into the following parts during the charging process:

Figure 11 GB/T 27930 Standard Figure 12 GB/T 27930 Charging process

In the handshake recognition phase, the charger connection check is completed and

general information such as the protocol version and vehicle information (battery type,

vehicle identification number etc.) is exchanged. What’s most concerning is that during

Phase 2, the BMS will transmit the VIN number to the charging pile.

 2120

HITBMag | June 2021

After actual testing, we use cantools and

the corresponding DBC file to successfully

translate all messages during the charging

process as shown in Fig 13 (left).

Figure 13: GB/T 27930 Charging protocol

Table 3: BRM Message during the handshake

We found The BMS of the electric vehicle

transmits the vehicle’s VIN to the charging

pile for identity authentication in the BRM

message during the handshake recognition,

as tabulated in Table 3.

 2322

HITBMag | June 2021

The following is the complete Plug & Charge’s arch. First, the car owner needs to register

and bind the vehicle’s VIN number on the charging pile operator’s APP, and activate

automatic payment.

Secondly, when the car owner is charging, owner only needs to directly plug the charging

gun into the electric car to charge.

The Charging pile will upload the VIN transmitted from the BMS to the operator’s cloud

server, and the operator will query and return the user credentials corresponding to the

VIN in the background database. After the charging pile receives the user credentials, it

will start charging and automatically pay at the end of the charge.

Vehicle identification number (VIN) is a unique code, including a serial number, used

by the automotive industry to identify individual vehicles. The biggest problem is VIN is

public plaintext information, with specific coding rules, and can also be obtained from

the front windshield of the car.

Figure 14 Plug & Charge based on VIN

Figure 15 VIN Coding rule

In order to configure the attack script quickly, we have written a tool that its main functions

include the tampering of VIN, charging voltage and current. It also supports the BMS

simulation, so that we can test the charging pile without a vehicle.

Figure 16: The position of VIN on the Tesla Model3

Figure 17 XCharger

 2524

HITBMag | June 2021

REAL WORLD ATTACK

In order to verify our tools in the real world, we rented 5 electric cars of different models

and tested multiple charging stations that support Plug & Charge. We verified that after

obtaining the VIN on the windshield of the vehicle, the charging pile can be successfully

attacked by XCharger to achieve free charging.

All the vulnerabilities we found have been notified to the vendor and fixed.

FUTURE TRENDS

According to the news, the next-generation charging standard “Chaoji”, dominated by

China and Japan, will be officially released, it’s improving the security of communications

and identity authentication. (Fig 19)

ChaoJi charging supports plug and charge, V2X, automatic charging system and other

new technology applications. Some of the security risks mentioned in our talk may be

resolved.

In addition, we also see another new standard, ISO15118 (Fig 20). It is a standard for

vehicle-to-grid communication, uses asymmetric encryption and digital signature to

ensure the security of communication between electric cars and charging stations, and

supports “plug and charge”.It uses PLC communication, which is mainly used in Europe.

Figure 18 Real World Attack

Through the discussion of these trends, we are very happy to see that security has

become a must be considered in these standards. We believe that in the near future,

when these new technologies and new standards are applied in the real world, they will

promote the security development of the entire electric vehicle charging industry. □

Figure 19 Chaoji Charging

Figure 20 ISO 15118

 2726

HITBMag | June 2021

REBUILDING
HEAVEN’S
GATE
from 32-bit Hell
to 64-bit Wonderland

ShengHao Ma

OVERVIEW

It is necessary for Microsoft to provide backwards-compatibility

for 32-bit software on 64-bit editions of Windows through the

“Windows32 on Windows64” (WoW64) layer, used to simulate any

32-bit binary as a native 64-bit process.

This is because, for compatibility, most application vendors would

like to release their products as 32-bit binary files that can be used

both on 32- and 64-bit versions of Windows.

In this report, we will discuss the WoW64 layer of the latest Windows

10 Enterprise by conducting reverse engineering. We’ll explore how

a WoW64 process is created in native 64-bit Windows, the difference

between 32-bit & 64-bit system interrupts, the translation engine

embedded in the WoW64 layer, and the relevant attack vectors.

We will demonstrate a new method to “knock on heaven’s gate”,

that rebuild a whole new path to the WoW64 translator. This makes

it possible to do process hollowing and bypass HIPS protection of

NOD32 at the same time.

We also found a new attack vector: abusing the design of WoW64

thread context snapshots to create a gadget, which can then be

used to take over the execution control flow of WoW64. It allowed us

to arbitrarily inject and conduct bypasses, and execute a mimikatz

process under HIPS protection of AVAST.

 2928

HITBMag | June 2021

WoW64 PROCESS CREATION

RunSimulatedCode

There is a function called

RunSimulatedCode which is

exported from wow64cpu.dll

(64-bit DLL) and is used as a

thread initiation entry under

WoW64 layer.

At the begin of the function

(as shown above) 64-bit

thread keeps a copy of

important register statuses

on the stack, allocating 68

bytes to the stack stack as a

buffer. It performs a series of

Initializations specific to the

64-bit WoW64 thread:

1. Set register r12 point to

64-bit TEB (Thread Environment Block)

2. Set register r15 point to a function table: TurboThunkDispatch.

3. Set register r13 point to 32-bit thread context, and It’s recorded in TEB64 +

offset 0x1488.

About point 1: Even if we’re in pure 32-bit mode, we still can get the address of TEB64

easily via gs:0x30. For point 2, TurboThunkDispatch, we’ll share more information shortly.

The most interesting part for us was point 3: registering r13 points to the 32-bit thread

context being used as snapshot for changing thread mode from 32-bit to 64-bit, and vice

versa.

TurboThunkDispatch

As mentioned before, register r15 point to a function table named TurboThunkDispatch,

including a total of 32 different callback functions which are used as trampoline to enable

the 32-bit system call to be simulated as 64-bit native interrupts.

For most Win32 APIs exported from ntdll.dll, only 2 callback functions of TurboThunkDispatch

that must be known will be executed:

1. The latest function CpupReturnFromSimulatedCode is the first executed

callback function when the 32-bit thread jumps back to 64-bit. When this

function is called, it’s used to take a snapshot of current thread status and pass

32-bit system interrupts to the WoW64 translator.

2. After CpupReturnFromSimulatedCode finishes its job and snapshots

the 32-bit thread current status, it will be followed by the first function.

TurboDispatchJumpAddressEnd will simulate 32-bit system calls by invoking

the translator function wow64!Wow64SystemServiceEx with the 64-bit calling

convention. It will then fetch the simulation return value from register Rax,

restore the 32-bit thread status from the latest snapshot, and lastly jump back

to 32-bit programs and resume running.

 3130

HITBMag | June 2021

NTAPI TRAMPOLINE

We just roughly discuss the creation flow of wow64 processes. The following part is the

implementation of interrupt simulateor from 32-bit to 64-bit.

Here we use NtOpenProcess as a sample.

In 32-bit mode, most Win32 APIs will finally use exported APIs of ntdll.dll to send requests

to the kernel. As many researchers know, in 32-bit mode, Windows reads register Eax

as the syscall number. All the arguments should be place on the top of the current stack,

and system interrupts can then jump into the system kernel.

However, if a 32-bit program directly sends an interrupt to the native 64-bit system, the

API requests will definitely fail. For example, the arrangement in memory of the 32-bit

or 64-bit data structure, and the mismatch of calling conventions between x86 and x64.

Therefore, there’s a gadget named WoW64SystemServiceCall (exported from ntdll.dll) to

replace direct syscall interrupts, and which is used as a gate to deal with all the issues

between 32-bit and 64-bit we just talked about.

Inside the WoW64SystemServiceCall, at wow64cpu.dll+6000, a far jump (0xEA) can be

used to modify the CS segment from 0x23 to 0x33, and that makes the Intel CPU parse

those machine codes from register Eip/Rip in an x64 Instruction set.

At the same time, we retrieved the 64-bit registers to use. The trick of modifying the CS

segment, to change the disassemble mode of an Intel CPU, is the well-known method

called Heaven’s Gate. Note that there’s 3 different mode of CS segment:

1. 64-bit (Native) = 0x33

2. 32-bit (WoW64) = 0x23

3. 32-bit (Native) = 0x1B

As mentioned before, register r15 point to the function table TurboThunkDispatch.

At wow64cpu.dll+6009 r15+0xF8 point to the last function of the table:

CpupReturnFromSimulatedCode.

CpupReturnFromSimulatedCode

CpupReturnFromSimulatedCode is the

first executed callback function when the

32-bit thread jumps back to 64-bit. At the

beginning, it snapshots the current thread

register statuses into 32-bit thread context

(dereferencing the pointer from register

r13).

An interesting thing here is, there are at

least two stacks in the memory of the

WoW64 process. One is used for 32-bit

program normal use; The other one is a

standalone and only used by the 64-bit

mode thread (inside the WoW64 layer) to

execute 64-bit native Win32 APIs.

Thus, at the begin of function one can use

xchg Rsp, r14 to exchange the currently

used stack from the 32-bit program stack

to the 64-bit stack. This 64-bit stack will be

held until the current simulation is done.

We can then use mov r14, Rsp to recall the

64-bit stack on r14 in the end WoW64 layer

(and it will be used again when launching

another 32-bit system interrupt).

Next, TurboDispatchJumpAddressStart

funtion will be used to choose the next

destination up to the current 32-bit syscall

number (Rax). The upper 2 bytes of the

syscall number should be zero, so the

result of shr ecx, 10h will get the element

index (Rcx) of TurboThunkDispatch, which

should also be zero.

Thus, in most situations, the

destination should be the first function,

TurboDispatchJumpAddressEnd, of the

function table TurboThunkDispatch.

 3332

HITBMag | June 2021

TurboDispatchJumpAddressEnd will simulate 32-bit system calls by invoking the

translator function wow64!Wow64SystemServiceEx in the 64-bit calling convention to

get the simulation return value from register Rax and then jump back to restoreStatus to

resume the 32-bit program.

In above picture, we can see that Wow64SystemServiceEx is a native 64-bit function,

and its usage follows x64 calling conventions. Its first argument is register Rcx, and the

second one is Rdx. The 32-bit syscall number is placed on the first argument, and the

start of 32-bit arguments on the stack (as known as va_start in C/C++) is placed on the

second argument.

After that, we just invoke wow64! Wow64SystemServiceEx, and it will translate our 32-bit

request into a 64-bit interrupt, execute, and set the result into register Rax.

In the sub-program restoreStatus (above) it will fetch 32-bit thread status from the

snapshot, and get recovered to the original state of the first step in WoW64 layer.

Then, use another far jump back to 32-bit program and set the CS segment back to

0x23. This causes the Intel CPU to treat the following machine code as 32-bit code.

THE WoW GRAIL: ABUSING THE TRANSLATOR

Building a New Path Back to Heaven

Previously, we have shown that there’s an important 64-bit function,

WoW64SystemServiceEx, embedded inside wow64.dll (64-bit native DLL). It simulates

any 32-bit request, and is easy to use.

Just give 32-bit syscall number information and a 32-bit argument list to

WoW64SystemServiceEx. It will translate it, then execute all the system requests in 64-

bit mode. It’s a graceful trick to bypass all the user-land based HIPS or EDR solutions,

because most user-land hooks of HIPS or EDR will be installed on the entry of the 32-bit

NTAPI by inline hooking – not on the WoW64 layer.

However, the first challenge we meet immediately is: how do we get the 64-bit address

of WoW64SystemServiceEx under pure 32-bit mode?

As mentioned before, r15 points to the function table TurboThunkDispatch, and the first

function of it fortunately is the pointer of function TurboDispatchJumpAddressEnd.

We also know there’s a far call instruction to invoke Wow64SystemServiceEx right in

the function TurboDispatchJumpAddressEnd, so it’s an easy thing to get the pointer of

Wow64SystemServiceEx if we know where the TurboDispatchJumpAddressEnd is.

In line 11 of the source code (above), there’s a shellcode using x86 instruction retf to

change the current CS segment to 0x33. After entering heaven’s gate, it causes lines 14-

27 of the source code to be treated as 64-bit assembly by the Intel CPU.

 3534

HITBMag | June 2021

We use the classic malware technique Process Hollowing (RunPE) (above) and all the

sensitive Win32 APIs have been built into our new path to heaven.

In our experiment, this method was robust enough to work against the fully updated

HIPS protection of ESET NOD32. This technique has been release under the Github

aaaddress1/wowGrail · GitHub .

In lines 14-20 of the source code, we can find the first pointer of r15. It should be the

address of TurboDispatchJumpAddressEnd. Read the destination from the x86 call

instructions inside TurboDispatchJumpAddressEnd, and now we get the 64-bit pointer

of Wow64SystemServiceEx. We can then use x86 instruction stosq to save the 64-bit

pointer into the variable pass from the caller.

In line 27 of source code, the shellcode makes the CS segment change back to 0x23,

run as 32-bit thread, and leave the function.The pointer of Wow64SystemServiceEx can

now be used to simulate any 32-bit syscall without the old path from 32-bit ntdll.dll.

Confirm the payload in the line 78-87 of source code (above): prepare syscall

number, and 32-bit argument list on Rcx and Rdx. Then enter 64-bit mode, use xchg

r14, Rsp switching current used stack to 64-bit stack. Next, invoke the pointer of

wow64!Wow64SystemServiceEx, use xchg r14, Rsp to switch the current stack to 32-bit,

and leave 64-bit mode.

Just abusing the payload as a gadget to launch 64-bit interrupts allows us to easily

bypass all the user-land hooks with just one gadget.

 3736

HITBMag | June 2021

WoWINJECTOR: ONE GADGET TO TAKE OVER THE HELL

The 32-bit Thread Snapshot

We’ve previously shared about the sub-

program restoreStatus. It will fetch 32-bit

thread status from the snapshot above,

and get recovered to the original state

when leaving 64-bit thread mode during

the WoW64 layer.

The most interesting part is, the address

of the 32-bit thread context is predictable.

Thanks to @waleedassar leaving a note in

his blog (pastebin.com/8ZQa2heh) about

the creation of WoW64 processes, from

which we learned:

1. There are 4 definite environment

blocks in a WoW64 process:

TEB64, TEB32, PEB64, PEB32

(ordinal by address, lower to

higher).

2. Kernel call nt!MiCreatePebOrTeb

allocates a large space used for

keeping the 4 blocks.

3. From the start of 32-bit TEB, the

address of the corresponding

64-bit TEB can be found at offset

0xF70.

Regarding point 2, an attacker can just

leak the address from one of the 4 blocks,

and addresses of the other 3 blocks will

be predicted, e.g. The 64-bit TEB always

precedes the corresponding 32-bit TEB

by two pages (AddressOf TEB64=TEB32 –

0x2000).

Moreover, we’ve found that address of the

32-bit thread context is stored at the fixed

offset 0x1488 on the TEB64. Thus, if we

can leak the address of PEB32, we can also

get the address of TEB64 (because of the

4 blocks in the same memory region) and

then we get the address of 32-bit thread

context.

As shown in the next screenshot, we

designed a hollowing function used to do

Process Hollowing by injecting the 32-

bit thread snapshot. Using the Win32 API

CreateProcess and GetThreadContext, we

can get the initial thread state of the child

process. Registering Ebx on a newborn

thread, the pointer of PEB32 is always

retained, so it’s not difficult to leak the

address of the 32-bit thread context.

In the next step, all we need to do is allocate a new space to keep shellcode, as well as

control the register Eip to shellcode.

BOOM! Without any sensitive APIs to control the program counter of a 32-bit thread, we

can inject a malicious payload like mimikatz into a new process under the full updated

HIPS of AVST. □

 3938

HITBMag | June 2021

macOS
LLOCAL
SSECURITY
escaping the sandbox and bypassing TCC

Sandboxing on macOS was introduced 13 years ago,
but Apple did not leave it at that. Step by step, additional
restrictions and new protection measures were added.
Since the release of macOS Catalina in 2019, even
non-sandboxed apps need to deal with sandbox-like
restrictions: all apps now need to ask permission to
access sensitive files, like those in the user’s documents
folder. Features such as the camera and geolocation
already needed user approval. This system of user-
controlled permissions is known as Transparency,
Consent & Control (TCC). Each new security measure
like this will also mean the introduction of new security
boundaries, with entirely new classes of vulnerabilities.
Many parts of the system must be re-examined to check
for these vulnerabilities. For example, malware can now
try to attack apps to “steal” the permissions granted
by the user to that app. Apple has taken steps to allow
apps to defend themselves against this, such as the
hardened runtime. Ultimately, however, it is up to the
developer of an app to safeguard its permissions. Many
developers are not aware of this new responsibility.
To make matters worse, Apple’s documentation and
APIs for these features are not as clear and easy to
use as they should be. We will start with an overview
of local security measures on macOS Big Sur. Then, in
the second part, we will show some vulnerabilities we
found in software to evaluate the effectiveness of these
measures. These vulnerabilities allowed stealing TCC
permissions, sandbox escapes and privilege escalation.

ABSTRACT

Thijs Alkemade and Daan Keuper

 4140

HITBMag | June 2021

LOCAL SECURITY ON macOS

Gatekeeper

In Mac OS X Lion (10.7, released in 2011),

Apple introduced code signing. This is a

method of adding a cryptographic signature

to an executable with prevents tampering

with any part of the file. Signatures are

(usually) generated using a certificate

issued by Apple to a paid member of the

Apple Developer Program, which also

includes a developer identifier to indicate

which developer account signed it.

Each signed binary includes a list of

entitlements. These are mainly used to

give the process more (or sometimes

less) permissions. For example, a process

accepting incoming XPC connections can

check the entitlements of the connecting

process to decide if it is authorised to

perform a specific action.

Any developer can add these entitlements

while signing, but most of them are private

and are only accepted on Apple’s own

executables.

If an application needs a specific powerful

entitlement, then it is common to separate

the part that needs to use that entitlement

into a separate XPC service. Then the main

application can ask the service to perform

the operation. This can make it much

harder to abuse that entitlement when a

vulnerability is found in the application.

One problem with the way entitlements

are used is that Apple rarely revokes code

signatures, in practice only for malware.

This means that if an application with a

powerful entitlement had a vulnerability,

then it will remain exploitable even if the

application is updated to fix the vulnerability

as malware could download an old copy

and exploit that.

Each time a binary is started, the code

signature is verified. Embedded resources

(such as images and frameworks) can

also be signed. A hash is computed for

each signed resource and placed in the

CodeResources file. The hash of this file is

included in the code signature of the main

application.

Checking only the binary is known as

a shallow code signing check. It is also

possible to perform a deep code signing

check, which checks all resources. This is

very slow for large applications, as it needs

to compute a hash of every file.

When an application has been downloaded

from the internet, the downloading tool can

add a quarantine flag to the application.

If this flag is present, then a deep code

signing check is performed and the user

must confirm running the application.

This is used to prevent users from opening

an application which was pretending to be

something else. A quarantine flag is also

automatically added to all files created by

a sandboxed application.

In macOS Mojave (10.14, released in

2018), Apple added the ability to notarise

applications. To do that, the application

must be signed, using the hardened runtime

wand a copy must be uploaded to Apple,

who can grant it a notarisation ticket.

The hardened runtime is a set of

extra restrictions mainly for making

process injection more difficult.

When a user attempts to run a

quarantined application, macOS

will check the notarization ticket. If it

is notarised, then the user is asked

if they want to allow it to run. If not,

the user must perform additional

steps to run it. See Figure 1 for the

message when running a newly

downloaded notarised application.

Figure 1: Running a newly downloaded

application requires user approval.

Seatbelt

In Mac OS X Leopard (10.5, released in

2007), Apple introduced sandboxing,

known also as Seatbelt. In the kernel a

hook has been added to each system call

to check the sandboxing permissions of the

calling process to determine if an operation

is allowed or not.

The permissions of a process are

determined based on a profile. These are

written in a Scheme-like programming

language. For many of the internal services

in macOS a custom profile is included to

allow only the strictly necessary permissions

for that service. Processes can sandbox

themselves by calling sandbox_init(), so a

daemon could perform some unsandboxed

setup before enforcing the sandbox.

One special profile is the Mac App Sandbox

profile, included in application.sb. This

profile is enforced automatically and

immediately if the application has the com.
apple.security.app-sandbox entitlement.

The use of a programming language for

the profile is used extensively for this

profile: the entitlements of the process are

checked to change the restrictions that

are enforced. For example, the com.apple.
security.network.server entitlement gives

an application the permission to start a

network server, which is implemented in

the sandboxing profile as:

(when (entitlement “com.apple.security.
network.server”)

 (allow network-inbound (local ip)))

The Mac App Sandbox also does

something else: it creates a new container

for the application. Each application

gets its own container in ~/Library/

Containers/<bundleid>. These containers

contain a mix of symlinks to the real

directory and new directories specifically

for that application.

The main use for this is to make sandboxing

 4342

HITBMag | June 2021

for existing applications easier, as the

application gets full access to the new

directories in its container, without being

able to access files of other applications.

Note that these containers are not a

security restriction, and that the application

can see the path to the container and

ignore the container if it wants. It should

not be confused with Docker containers or

BSD jails.

System Integrity Protection

System Integrity Protection (SIP) was

introduced in OS X El Capitan (10.11,

released in 2015). Most Macs will be used by

a single user with administrative privileges.

This means that obtaining the password for

the current user (for example, by imitating

a password prompt) is enough

to elevate permissions to root.

The goal of SIP is to reduce

the impact that only a privilege

escalation to root can have.

For example, SIP restricts

modifications to certain files,

the loading of kernel/system

extensions and process

debugging. It is implemented

using much of the same

technology as sandboxing,

essentially enforcing a global

implicit sandboxing profile for

all processes.

SIP also limits access to sensitive

user-specific files. For example,

processes are not allowed to read files in

~/Library/Mail unless they have specific

entitlements, even for the root user. This

also means that a process running as a

user may have permissions that a different

process running as root does not have.

Transparency, Consent & Control

Transparency, Consent & Control (TCC)

was introduced in macOS Mojave. This is

as a dynamic sandbox for privacy-sensitive

subsystems, such as access to the camera,

location services, Documents folder, etc.

Instead of a static sandboxing profile, the

user can control these permissions and

choose to allow or deny them. See Figure

2 for an example of this prompt.

The TCC daemon keeps track of what

permissions the user has assigned per

application. This is done based on the

bundle identifier and the developer

identifier of an application, which means

that upgrading an application maintains its

permissions.

Figure 2: The user controls whether an

application can read from sensitive directories.

Signed System Volume

The Signed System Volume (SSV) was

introduced in macOS Big Sur (11, released in

2020). In Catalina (10.15, released in 2019),

the start-up disk was split into two volumes:

a system volume and data volume. The

system volume was for system files and

mounted as read-only. The data volume

held all user files, third-party applications,

etc. Only when installing a new system

update the system volume would be

mounted as writable. This made it harder

for malware to persist.

In Big Sur, Apple has taken this concept

even further. The system volume is now

cryptographically signed. For each file on

the system volume, its SHA-256 hash is

stored in the metadata of the file. These

hashes are combined into a Merkle Tree.

The root hash of the Merkle Tree (the seal)

is signed with a key from Apple. When

reading a file from that volume, its hash is

verified against the tree to ensure it is not

modified.

VULNERABILITIES

In this section, we will cover a few different

vulnerabilities to demonstrate how these

security mechanisms work in practice.

Privileged updaters

On some systems, the most active user

has a Standard user account instead of

an Administrator account. For example,

machines used by children where only a

parent uses the Administrator account.

Standard users are not allowed to make

changes in /Applications. This creates

an issue for installing updates: how can

software that automatically updates itself

do that if a standard user account uses it?

Installing software updates quickly is

important, especially for security-critical

software such as browsers and PDF

readers.

Some software has implemented a way to

handle this: a separate service running as

root is used to perform the installation. A

separate service is installed as a privileged

helper tool with a launch daemon

configuration automatically starting it as

root. The application checks for updates,

sees a new update is available and

downloads it.

It then asks the service to install the

downloaded package. This way, the

Administrator needs to enter their password

only once, to install the privileged helper

tool on the first run.

The privileged service should perform two

checks that are critical for security: the

XPC connection should originate from the

correct application and the update package

should be legitimate. If both checks are not

implemented correctly, privilege escalation

is a possibility.

Another app could ask the service to install

a malicious package, which would in most

cases mean privilege escalation. Although

it requires two vulnerabilities, in practice

it happens quite regularly that both

vulnerabilities are present. The first check

could be bypassed if the code signing

check is wrong (or even entirely missing)

or if a process injection vulnerability exists

in the application. The second check can

often be bypassed using a time-of-check/

time-of-use (TOCTOU) vulnerability: the

package is checked and found to be

legitimate, but between the check and

installation it is changed to a malicious

package.

 4544

HITBMag | June 2021

Adobe Acrobat DC

Adobe Acrobat DC was vulnerable, as found

by Yebin Sun of Tencent Security Xuanwu

Lab and described on https://rekken.github.

io/2020/05/14/Security-Flaws-in-Adobe-

Acrobat-Reader-Allow-Malicious-Program-

to-Gain-Root-on-macOS-Silently/.

The code signing check was completely

absent and symbolic links could be used to

swap the update package between check

and use. Adobe released a fix for this in

May 2020.

However, both fixes were not sufficient, as

first reported by Csaba Fitzl from Offensive

Security. The code signing check was not

implemented correctly.

One difficulty with a code signing check is

that the process identifier (pid) is not safe:

an application can open an XPC connection,

send a request and then execute a different

process while keeping its pid the same.

A check based on the pid has a chance of

looking at the new process instead of the

old one. The way that was used by Adobe

relied on the pid for the check, which meant

it could be bypassed.

For the second part, only a check was

added to see if the file was a symbolic link.

Because the file was moved (not copied)

it was possible to bypass the check by

using a hardlink to the update file. Adobe

released a second patch in August 2020.

We looked at it sometime later than Csaba,

but before the fixes were released. When

they were, it took only a short amount of

time to adapt our exploit. In the code, it

was visible that Adobe had started on the

correct check for the XPC connection,

but this was unfinished, and the function

always returned true.

Adobe had also implemented a check

that the package was a regular file with

no additional references (so no hardlinks),

but the package was still moved instead of

copied. This made it possible to perform the

following attack: the malicious application

could open a file descriptor for the package

file and then request the installation.

Open file descriptors remain valid if a file

is moved and its permissions are changed,

even if the new permissions would no

longer allow that application to open that

file.

By using the open file descriptor and

switching the contents from a legitimate

package to a malicious package at the right

moment, it was possible to use a malicious

package and elevate privileges to root.

This is a race condition, however, we can

cheat at this race: the log of the service is

publicly readable, so we can swap the file

immediately after reading the line that it

has been verified.

Adobe is not the only large company

with vulnerabilities in its privileged

updater. Google Chrome, Microsoft Office

AutoUpdate and Microsoft Teams have all

had similar issues over the years.

What makes this issue even more

dangerous is the fact that users on macOS

are used to deleting an application

to uninstall it. Unless a self-destruct

mechanism is specifically implemented

in the privileged helper tool, it will remain

available, waiting for requests to install

updates but never getting updated itself

because the application that needs to

initiate the update is gone.

A user who has used an application years

ago may therefore still have a vulnerable

privileged helper tool allowing privilege

escalation in this way.

Open and save panels (CVE-2020-

27900)

Open and save panels, in which users

select a file to open or a place to save a

file, are used often by any macOS user.

These panels appear quite dull but have

a surprisingly complicated implementation

to deal with sandboxed applications. They

form a critically important security boundary

for the Mac App Sandbox.

The contents of a panel are drawn

by a different process called

(openAndSavePanelService) which is

unsandboxed and has access to all files,

similar to an iframe in a website. Once the

user has selected a file, the application’s

sandbox is extended to allow access to

that file temporarily.

This makes use of the class NSRemoteView

to receive the UI from the other process.

This is an entirely private API, but the

Objective-C runtime makes it possible to

inspect the list of methods for all classes

at runtime. In that list of methods, we

found an interesting method named

-[NSRemoteView snapshot:].

As the name suggests, this takes a snapshot

of the view’s contents and returns it as a

bitmap to the application. See Figure 4 (next

page) for an example where a sandboxed

application obtains a snapshot.

When used for an open panel, it allowed a

sandboxed application to obtain a directory

listing for directories it does not have

access to. Some files such as images show

a preview of their contents which the app

could also obtain. Apple has fixed this by

adding a new authorization check to this

function.

Figure 3: Vulnerabilities in privileged helper tools that could lead to privilege escalation.

 4746

HITBMag | June 2021

Figure 4: A sandboxed application obtains a screenshot of an open panel, with a listing of the user’s

files.

System Preferences sandbox escape

(CVE-2020-10009)

Contrary to the iOS App Sandbox, the Mac

App Sandbox profile allows fork() and exec,

which inherit the sandbox of the parent.

Attempting to perform an operation that is

prohibited by the sandbox in most cases

only results in a “permission denied” error

result.

One exception for this is attempting to

apply a sandbox configuration when an

application is already sandboxed, which

makes the kernel terminate the application.

This means that launching other processes

from a sandboxed application works if

those processes are not sandboxed. This

works for command-line tools, but also for

complete applications. To see what would

happen, we launched all applications

included in a default installation of macOS

from a sandboxed application. This led to

some interesting results.

The most interesting application was

System Preferences.app because this

application was working fine. Even the

security critical settings in the Security

preference pane were working as usual.

Inspecting the process tree in Activity

Monitor showed why this was the case.

Each of the preference panes in System

Preferences is running in a separate XPC

service, using the same NSRemoteView
technology as the open panels to draw in

the System Preferences window.

This is used even for third-party preference

panes, which are not XPC services,

but bundles. These are loaded by the

legacyLoader XPC service, which translates

from the old bundle-based preference pane

API to the new NSRemoteView method.

While this was an interesting trick, it did

not compromise the security of System

Preferences yet. To do that, we noticed

that System Preferences had creating a

few files in the container of the sandboxed

application, including 3 cache files. This

meant that System Preferences was

resolving the path for these files relative to

the container of the sandboxed application.

The file com.apple.preferencepanes.
usercache contained a list of the third-party

preference panes installed by the user,

likely so those do not need to be analysed

on each launch. No validation was present

on the paths in that file, which made it

possible to perform the following attack:

1. Create new cache file with a

preference pane using a bundle

from our application.

2. Add a new alert for this

preference pane.

3. Start System Preferences within

the sandbox of this application.

The new alert added in step 2 meant that

System Preferences would automatically

open the malicious preference pane. Then,

legacyLoader would be launched (an XPC

service, so not in our sandbox) and it would

load the bundle of the malicious preference

pane, giving the application code execution

outside of the sandbox.

This meant we had a sandbox escape.

Apple fixed this in the macOS Big Sur

release by adding a check to the main()

function of System Preferences to exit if it

is sandboxed.

Electron apps with TCC

The TCC permissions of an application

are tracked based on the bundle identifier

and the developer identifier. Notably, the

version of the application and the path

to the application do not matter for TCC.

Shallow code signing checks only look

at the binary of the executable itself, any

included resources are not considered

unless a Gatekeeper check is performed.

The hardened runtime means that any

included libraries and frameworks are

also checked once they are used, but

interpreted code that is in a file separate

from the main executable is not checked.

Electron applications are built by combining

a web application with a Chromium

runtime. This means that most of the code

is implemented in JavaScript in separate

files. This allows the following attack to

steal the TCC permissions that applies to

all Electron applications:

1. Copy app to a writable location.

2. Replace JavaScript with

malicious code.

3. Launch the modified app.

4. Use TCC permissions of the app.

As it happens, many video chat applications,

including Microsoft Teams, Signal, Slack,

Discord and Skype, use Electron for their

desktop clients. This means that the

chance of a user having given webcam and

microphone access to at least one Electron

application is very high.

As a result, malware that has infected

a system can also obtain access to the

webcam and microphone by exploiting

one of those applications in this way.

Solving this issue using the existing code

signing APIs is difficult. Performing a deep

code signing check by the application on

itself is insufficient: the resource could be

modified after the check but before the use

of the file. One way this could be addressed

for Electron apps would be to embed a list

48

HITBMag | June 2021

of hashes for each JavaScript file in the

main executable and verifying those each

time a resource is opened.

For non-Electron apps there are also design

issues. Even if the application currently uses

the hardened runtime, it is very likely that

a previous version exists that did not use

it. By downloading an old version without

the hardened runtime, setting a DYLD

environment variable and then launching

it, any application could be exploited

to steal their TCC permissions. This is a

design issue that is up to Apple to solve,

for example, by not allowing downgraded

applications to use TCC permissions.

App process injection

Process injection is a way for an application

to add code to a different application.

Replacing frameworks or the JavaScript

code of Electron apps are examples of doing

this that have already been mentioned, but

many other techniques exist. We have also

demonstrated how process injection can

be used to communicate with privileged

helper tools and to steal TCC permissions.

During our research, we have reported two

new process injection vulnerabilities to

Apple in September and December 2020

that are currently still under investigation,

so we are not able to share the full details.

To assess their impact, we investigated

what the impact of a generic process

injection technique could be.

We found that both vulnerabilities could be

used for privilege escalation to root and

for bypassing SIP restrictions. One of them

could also be used as a sandbox escape.

The only details we can give for the

sandbox escape is that injecting into any

non-sandboxed process from a sandboxed

application is enough to escape the

sandbox.

For privilege escalation, we inject into an

application that has a specific entitlement.

Some applications have an entitlement

allowing them to install packages signed

by Apple without user approval. For

example, Boot Camp Assistant.app. This

is the entitlement com.apple.private.

AuthorizationServices with the option

system.install.apple-software.standard-

user.

This means we can install any Apple signed

package by injecting into one of these

applications. Ilias Morad found that the post-

install script of Apple’s macOSPublicBeta
AccessUtility.pkg can execute arbitrary

code as root. See the writeup for CVE-

2020-9854 https://a2nkf.github.io/

unauthd_Logic_bugs_FTW/.

To bypass the filesystem restrictions for

SIP, we abused the application macOS

Update Assistant.app. This application was

included on the beta installation image for

macOS Big Sur and it has the entitlement

com.apple.rootless.install .heritable.
This means that this process and any

subprocesses it starts are exempt from SIP

for accessing files.

CONCLUSION

Apple has added a lot of new security measures to macOS

over the years, some of them bringing macOS closer to

the security of iOS. Many weaknesses in these systems

still exist.

Sandboxing is an important part of macOS security. The

security of the iOS sandbox has received a lot of attention,

which has often carried over to macOS. However, the

higher layers of the sandboxing functionality on macOS

have not gotten similar attention. This leaves a lot of

unexplored attack surface, for example in AppKit.

TCC is used to bring the user-controlled permissions of

mobile platforms to macOS, without enforcing the use of

sandboxing on all applications. The security of this system

depends on each application managing their permissions

securely, as only a single vulnerable application with a

TCC permission can allow malware to steal it. It also suffers

from design issues making it easy to bypass in practice.

Process injection vulnerabilities have become devastating

on macOS because they can be used to defeat many

of these security measures, such as TCC, code signing

and in some cases sandboxing. This is partly due to the

assumption by Apple that process injection is not possible

and that therefore they can give their own applications

powerful entitlements. Sometimes these entitlements can

be equivalent to running a process as root. □

Want this
space

for your
brand?

Contact us
editorial@

hackihackinthebox.org

mailto:editorial%40%20hackihackinthebox.org?subject=Branding%20opp%20with%20HITBMag
mailto:editorial%40%20hackihackinthebox.org?subject=Branding%20opp%20with%20HITBMag

 5150

HITBMag | June 2021

INSECURE
LINK:
SECURITY
ANALYSIS
AND
PRACTICAL
ATTACKS
OF LPWAN

Li YuXiang and Wu HuiYu

With the rapid development of
the Internet of Things technology,
many new smart scenarios have
emerged in recent years, such as
smart cities and smart agriculture.
The popularity of these new
scenarios is inseparable from
the rapid development of
LPWAN (low-power wide-area
network). In LPWAN, the two
most mainstream technologies
are LoRaWAN and NB-IoT,
with hundreds of millions of
IoT devices connected by the
two technologies. Due to the
complexity of the LPWAN supply
chain, security in this area
cannot be ignored. In recent
years, LPWAN security research
has focused on LoRaWAN,
mainly focusing on LoRaWAN
specification and keys. NB-IoT
is relatively complicated and
closed. Therefore, there are few
security researches on NB-IoT
in the industry. In this talk, we
will share the security research

findings in the LPWAN. We take
modules and chips in the real
world as practical objects to
conduct a more in-depth study on
the security of the LPWAN supply
chain. First, we will introduce the
supply chain implementation of
different technologies in LPWAN
and share the findings of our
practice of existing security
research on actual equipment.
In addition, we will analyze
the architecture of LoRaWAN
and NB-IoT modules from the
perspective of supply chain, and
summarize the attack surfaces
of the two technologies in the
real world. Finally, we will share
how to discovering and testing
the vulnerabilities on the LPWAN
module, as well as the multiple
security risks (LoRaDawn) we
found in the LoRaWAN supply
chain. We hope that our findings
can help manufacturers improve
the security of the LPWAN supply
chain.

ABSTRACT

 5352

HITBMag | June 2021

INTRODUCTION TO LPWAN SUPPLY CHAIN

In order to overcome the limitations of short range protocols, Low Power Wide Area

Networks (LPWAN) are introduced, which offer a long range connectivity in the order

of kilometers. It has low power and low bit rate for long-distance communication. The

mainstream LPWAN technology includes LoRa, NB-IoT, sigfox.

At present, these communication technologies have been widely used, including smart

cities, smart agriculture, smart industries and so on, which belong to the application

scenarios of LPWAN.

Figure 1 Market Share of LPWAN

According to the research of some organizations, it is predicted that more than one

billion devices will use LPWAN technology in the future, among which LoRa and NB-IoT

will occupy a large market share. At the same time, compared with Zigbee, Bluetooth

and other communication technologies, the security research of LPWAN is relatively less.

With the large-scale use of LPWAN devices, security in this area will be very important.

LoRa/LoRaWAN

LoRa (Long Range) is the modulation technique used in the physical layer that enables

long-range low-power communications by using Chirp Spread Spectrum (CSS)

modulation. It use unlicensed frequency bands, such as 470, 868, 915 MHz, anyone

can independently deploy the network. LoRaWAN is a cloud-based medium access

control (MAC) layer protocol but acts mainly as a network layer protocol for managing

communication between LPWAN gateways and end-node devices as a routing protocol,

maintained by the LoRa Alliance.

NB-IoT

NB-IoT is a new IoT technology set up by 3GPP as a part of Release 13. Although it is

integrated into the LTE standard, it can be regarded as a new air interface. It uses the

licensed frequency bands, which are the same frequency numbers used in LTE, and

employs QPSK modulation. There are different frequency band deployments, which are

stand-alone, guard-band, and in-band deployment

LPWAN Supply Chain

LoRa patent technology is dominant, mainly concentrated in semtech. There are more

NB-IoT chip vendar, including Qualcomm, MediaTek, and Hisilicon, all of which have

developed chips of their own architecture.

Then there is the module. Some major module manufacturers (such as RAK, quectel,blox,

etc.) encapsulate the chips and the capabilities they provide through integration, and

give them to the equipment manufacturers .

Equipment manufacturers will purchase a large number of modules for the development

of end products. For example, water and electricity meter, door/window sensor, etc.

Figure 2 LPWAN Supply Chain Composition

In the end, when deploying the LPWAN solution, you need to work with cloud vendors or

operators to complete the deployment. At this point, the whole solution is fully deployed,

and the scheme will be managed or optimized with cloud data in the later stage.

In the real world, a complete LPWAN solution requires the participation of many vendors,

so we think that the security of LPWAN supply chain is worth studying.

 5554

HITBMag | June 2021

LoRaWAN vs NB-IoT

Technical characteristics

From the technical characteristics, because LoRaWAN is simple and easy to deploy, so

in battery life, coverage, cost efficiency will be better than NB-IoT. On the contrary, NB-

IoT is managed by traditional telecom operators and refers to 3GPP standards, so it is

excellent in terms of latency and security.

LoRaWAN uses AES 128 as its security basis. NB-IoT ‘s security features follow LTE, which

has security protection in AS,NAS. At the same time, it uses SIM card as authentication,

which is relatively more secure.

Figure 3 Technical Characteristics of LoRaWAN and NB-IoT

Network architecture

The LoRaWAN device transmits data to

the gateway by radio. The gateway is very

similar to the router, one side receives

LoRa packets, the other side can access

Ethernet through LTE, WIFI and other ways.

Finally, it reaches the network server,

and the solution manager can manage

the device according to the application

server. The LoRaWAN gateway is easy to

buy, which is of great help to our security

research.

NB-IoT is quite different. It is a modified

version of LTE. Therefore, the device

is connected to the operator’s network

through the base station (called eNodeB in

LTE). An eNodeB is expensive and difficult

to buy, and requires in-depth knowledge

of radio before it can be developed on

its own. Then there is the core network

of operators. NB-IoT follows LTE’s EPC,

which is a complete black box for us.

Finally, connect to the IoT platform through

the network. Managers can manage the

equipment through this platform.

Figure 4 Network Architecture of LoRaWAN

Figure 5 Network Architecture of NB-IoT

 5756

HITBMag | June 2021

NEW SECURITY RISKS OF LoRaWAN AND OUR PRACTICE

LoRaWAN Protocol

The lorawan protocol consists of two parts,

and lora is responsible for radio modulation

and demodulation. The MAC layer is our

focus. According to the specification,

lorawan devices will be divided into three

categories: class A, class B, class C. Choose

according to different scenarios.

There are many keys in LoRaWAN.

Generally speaking, The security basis of

the protocol is AES. The AppKey is stored in

the node and server, used to generate the

session key. NwkSKey and AppSKey are

session keys that are used for encryption,

decryption and MIC verification.

LoRaWAN has two ways to activate devices,

ABP and OTAA. ABP can be understood

as a constant session key, while OTAA

conducts key negotiation through AppKey.

Previous Security Research

The existing security studies of the two

technologies are mainly as follows:

• LoRaWAN: The security issues of

the specification (v1.0.3), which

has been fixed in the new version

of the specification. But there are

also great challenges in using the

new specification in the real world.

The security risks of LoRanWAN

deployment, is usually an issue of

secure use of keys. At this stage,

it can be well solved by improving

manufacturers’ security awareness

and compliance operation.

• NB-IoT: There are few studies, most of

which is survey or theory.

Security of LoRaWAN Supply Chain

In this section, we will introduce our new

discovery in the lorawan supply chain,

named loradawn. These risks occur in

nodes, gateways and core networks, and

are verified in practice.

Lorawan has many open source

implementations, and these

implementations are actually used in the

real world. This slide lists several of the

projects involved in our study, including

the lorawan protocol stack, gateways, and

servers.

Architecture of LoRaWAN Nodes

Products on the market usually have two

architectures. The first is the MCU plus

Radio mode. This method is low-cost, and

the application and lorawan protocol stack

run in this MCU and operate radio to send

radio packets.

The other is the way of adding module to

external MCU. At this point, MCU usually

only runs applications or RTOS. The work

on the protocol stack and radio operation

is integrated into the module, and the

module vendor will also add a part of the

AT library.

But regardless of the architecture, we

find that the lorawan protocol stack is an

essential common component. The most

widely used protocol stack is LoRaMac-

node. This is why we study this software.

Figure 6 Architecture of LoRaWAN Nodes

Architecture of LoRaWAN Gateways

Lorawan gateways are similar to routers. Packet Forwarder components are usually

running on linux. The Packet Forwarder component reads the Lorawan packet through

the driver, encapsulates the data into a specific protocol and sends it to the network

server. Packet Forwarder components include packet_forwarder,basicstation,mqtt, etc.

Hardware needs to be connected to SX1301 to operate lora radio packets.

For example, the architecture of the RAK831 gateway shows that it is based on raspberry

pie, connects to SX1301 through a converter board and manipulates data through SPI

Figure 7 Architecture of LoRaWAN Gateways

 5958

HITBMag | June 2021

Architecture of LoRaWAN Network Server

The mainstream lorawan servers are chirpstack and ttn, both of which can be used for private deployment. In addition, TTN

provides public services that allow anyone to build lorawan solutions. The two architectures are as follows: In general, they all

include several components:: MQTT Broker, network server, application server, database, integration. Communication between

these components uses MQTT,gRPC,HTTP and other protocols.

Chirpstack

Figure 8 Architecture of Chirpstack

TTN

After introducing the technology implementation in the real world, let’s summarize the security risks

of lorawan supply chain.

On the node, we can pay attention to the vulnerabilities of the loramac-node software, which is a

widely used software.

On the gateway, we can pay attention to the security issues of different Packet Forwarder.

wOn the server, they are all written in golang, so we can focus on the security risks introduced by the

default configuration and open source code. Figure 9 Architecture of TTN

Security Analysis of LoRaMac-node

The loramac-node is developed by semtech and is widely

used. Most packet parsing needs to know AES KEY, which

we think will be very difficult in future. Therefore, our focus

is on the logic before participating in the AES operation, and

this part of the code is very simple. But fortunately, we found

a vulnerability.

The vulnerability is caused by loramac-node ‘s failure to

verify whether the packet length is valid when processing

JOIN ACCEPT response packets. The vulnerability exists

in the process of OTAA, which can cause harm to the

devices that are joining the network. For deployed projects,

it is necessary to rejoin the network, which needs to be

combined with other attack methods.

The obvious advantage of this vulnerability is that we can

launch attacks without knowing the appkey and achieve

a widespread denial of service by sending malicious radio

packets.

 6160

HITBMag | June 2021

Send radio packets to nodes

Because of the low power consumption of lpwan, they are not always online, so attacking

such devices requires a specific cycle.

The receive window for class a devices is defined in the lorawan specification. After

the device sends the uplink packet, two short receiving windows will be opened, and

the lora packet will be processed only when it is received in the receiving window. In

addition, the downlink channel is also different in different areas. For example, in CN470,

RX1 Channel Number equals Uplink Channel Number modulo 48.

Therefore, after calculating the appropriate delay and channel, you can really launch an

attack.

Figure 10

Downlink

Channe of

CN470

Figure 11

The Receive

Window for

Class A

Debug

After having the ability to send malicious radio packets, we can select some development

boards as the environment for loramac-node debugging. We can choose the P-NUCLEO-

LRWAN1 development board as the test equipment, which provides MCU, expansion

boards, and stlinks. VS CODE and openocd are used to debug the software. This

development board is very suitable for debugging the protocol stack. Can help us quickly

verify the vulnerability.

Figure 12 P-NUCLEO-LRWAN1 Development Board

 6362

HITBMag | June 2021

Our Practice

We chose a temperature sensor as the target to test it. The attack flow is as follows:

when the temperature sensor sends an uplink OTAA packet, our hijacker sniff the radio

packet and notify the local server.

After calculating the downlink channel and delay, the local server sends the malicious

packet to the hijacker. The hijacker sends it to the device after an appropriate delay. At

this point, the sensor receives malicious packets, triggers related vulnerabilities, and the

device denies of service.

The above is the practice of the loramac-node vulnerabilities we found in the actual

device. We believe that lpwan equipment is used very much and is mostly used in

unattended scenarios such as smart cities and agriculture. Even denial of service has a

great impact.

Figure 13 Attack Flow of Our Practice

Security Analysis of LoRa Basics™ Station

LoRa Basics Station is new state-of-the-art gateway packet-forwarder. Compared with

traditional components, it defines two protocols, CUPS and LNS. Cups is used to upgrade

Basics Station, and the protocol format generally includes length and data.

LNS uses websocket to establish a long connection with the server, and the server can

send data to the gateway. In theory, if TLS Pinning is used, it will be safer.

The main risks are as follows:

1. This component does not enable authentication mode by default, so a lack of

security awareness of the deployer may lead to man-in-the-middle hijacking.

2. The LNS protocol contains powerful capabilities and may be at risk of abuse.

The server is fully trusted in the LNS protocol. Therefore, even if TLS is enabled,

a malicious server can still abuse the capabilities of the LNS protocol, , such as

remote code execution

3. CUPS itself has memory or logic vulnerabilities when processing data, which

can lead to security risks.

From the documentation, The LNS contains remote commands. Although this is helpful

for remote management of gateways, it may be abused and lead to security risks.

Therefore, we can RCE by hijacking or malicious servers to send packets to the gateway

components.

Chirpstack: Risk of Abusing the Default Configuration

The default configuration of Chirpstack is a security risk. If the server deployer does not

read the instructions carefully or does not have security awareness, it will lead to the risk

of an attack on the server.

For example, the default weak password may be used in the database, web. If an attacker

can enter the web service of the application server with a weak password, he can obtain

sensitive device information, such as device data, appkey, etc.

In addition, some MQTT and gRPC services are not authenticated, which can lead to

permissions or data disclosure. We verified these security risks in April last year.

We searched the current network and found that the deployment of Chirpstack servers

showed a growing trend, these security risks are worthy of our attention.

MQTT integration is usually used by managers to manage the deployed lorawan solution.

In the default configuration of MQTT broker, the username, password and ACL are

optional. Therefore, incorrect configuration may bring the following security risks:

1. Attackers can subscribe to any topic through wildcards. In this way, the data of

the interaction between the device and the server can be obtained, including

device information.

2. After knowing the device information, the attacker can also forge downlink

data and send it to the node through MQTT.

LoRaWAN-stack: Security issues of open source code

In addition, UDP parsing logic of the lorawan-stack code may be an attack surface. By

Sending a malicious UDP packet causes the server to crash when the gateway id is

known. This is also a way to attack the server.

 6564

HITBMag | June 2021

SECURITY INTERNAL OF NB-IOT

Nbiot chips are highly integrated, usually soc. It contains different chip architectures and

RTOS.

In addition, the nbiot protocol is far more complex than lorawan. The entire protocol

stack includes baseband, TCP/IP, and applications. The baseband includes the physical

layer of nbiot, and the upper layer follows the protocol of LTE.

In the nbiot network, there are black boxes in the EPC/eNB/IoT Cloud Platform, which

brings a lot of challenges to the security research.

Figure 14 Protocol Stack of NB-IoT

Architecture of NB-IoT Chip (A)

It is a multi-core architecture, each core

using ARM Cortex-M0. The three cores are

used for different purposes and each core

has its own RTOS for task scheduling.

Core A contains the application layer

protocols in the TCP/IP protocol stack such

as DTLS,COAP,LWM2M. In addition, it also

includes the application layer, which is used

to provide module vendors to develop the

corresponding AT library or application

development. APPS can only provide AT

command interface, so that external MCU

can interact with nbiot chip or module

directly through AT command. In this way,

the development of the application is

mainly focused on the external mcu.

Core B mainly deals with lower-level

protocols, including baseband, such as

NAS,RRC,L2/L1 related to NBIOT, and uses

lwip as the tcp/ip protocol stack to provide

socket wrapper function for core A.

Core C is mainly to provide some security

capabilities. Including the security check

needed by security boot,FOTA and so on.

The manufacturer involves a set of RPC

mechanism, which uses shared memory to

realize the interworking of data between

cores.

Architecture of NB-IoT Chip (B)

The other chip architecture is implemented

in a single-core way. Take chip B as an

example, which uses ARM Cortex-M4. The

entire core is divided into two domains,

including the application domain and

Modem domain. It is very similar to the

division of AP and Modem in mobile

phones.

Each domain uses a different RTOS for

task scheduling. The application domain

includes the entire TCP/IP protocol stack

and the upper application. C

ompared with chip A, it also uses the

lwip library as the TCP/IP protocol stack

implementation, but it belongs to the

application domain together with the upper

layer protocol. Modem domain is mainly

related to baseband processing. The two

domains communicate with each other by

sharing queues. Bootloader is also included

in this core.

Similarly, the APP layer in the application

domain can provide only the AT command

interface for external MCU to operate

through the AT command.

Attack Surface of NB-IoT Module

After our reverse analysis, we found that

even though different vendors adopted

different architectures. But some technical

implementations are similar. We summarize

the attack surface of NBIOT chip.

There are three categories. The first

category is related to TCP/IP, which may use

the same third-party libraries or implement

specific logic based on the same standards.

The other is related to baseband, where

the technology implementation is related

to chip vendors, each of which has its

own implementation and will not use open

source third-party libraries. It is more difficult

to find this kind of software vulnerability.

Another category is the risk of inter-

core communication or inter-domain

communication. Most of the codes

we mentioned here belong to chip

manufacturers. Module manufacturers

mainly work in APPS.

HITBMag | June 2021

66

In addition to the attack surface introduced here, the application processing logic

developed by the equipment manufacturer will also have security risks. But because

the program developed by the equipment manufacturer is not a common component,

we will not introduce it here. If you want to attack programs developed by equipment

vendors, you can choose vendors with a high market share.

Our Practice

Because the nbiot chip is highly integrated and the technology is closed, it is difficult for

us to purchase the evaluation board of the chip for debugging. Therefore, we can only

get the running status of the chip by log and debug it.

Manufacturers have provided useful software to view logs. Through the log, we can

see some output inside the chip, including the status of the baseband, the output of

the application, and so on. It is a little helpful for us to understand the program flow and

verify software vulnerabilities.

We made some attempts to send packets to the nbiot chip. Different testing schemes

are adopted according to different protocol stacks. If it is a TCP/ip-related test, we use

raspberry pie and SIM card to access the network for testing.

For baseband related tests, SDR and SIM cards can be used for testing. We can use

open source projects for testing, but the compatibility is not very good at present. At the

same time, we can also buy nbiot base stations for testing, but this is not easy. There are

still many challenges to overcome throughout the testing process.

SECURITY ADVISE

In this section, we will provide some security suggestions

about the LPWAN supply chain.

For LoRaWAN, we believe that node developers should use

the latest version of the protocol stack for development.

The development and deployment of gateways need to

enable authentication and encryption mechanisms. The

service provider should clear the weak password, enable

authentication, and validate the input data with the open

port.

For NB-IoT, we believe that chip / module vendors should

update third-party libraries or chip firmware in a timely

manner. When using coap and mqtt as communication

protocols, TLS and authentication should be adopted to

improve security.

In the part of EPC, operators should make a good network

access policy to improve the security of the network. □

Figure 15 TCP/IP Testing Tool Figure 16 Baseband Testing Tool

 6968

HITBMag | June 2021

EXPLOITING
QSEE,
THE

RAELIZE
WAY!

Cristofaro Mune and Niek Timmers

INTRODUCTION

The Qualcomm IPQ40xx family of chips,

which includes the IPQ4018, IPQ4019,

IPQ4028 and IPQ4029, are popular System-

on-Chip (SoC) solutions for consumer and

enterprise networking products. Many

devices like the ASUS RT-AC58U, Cisco

Meraki MR33 and Aruba AP-365 use an

IPQ40xx chip as the main System-on-Chip

(SoC) in their design.

The OpenWRT Project supported device

database shows at least 34 products,

manufactured between 2018 and 2020,

that are designed around a IPQ40xx chip.

The total number of products is likely much

larger as many devices, like the Netgear

Orbi RB20, are not supported by OpenWRT

and therefore not included in the database.

We often analyze networked devices and

it’s not surprising that an IPQ40xx-based

device found a way to our lab. We got

extremely interested once we recognized

that this SoC supports Secure Boot and a

Trusted Execution Environment (TEE) made

by Qualcomm (hereinafter simply referred

to as ‘QSEE’).

During the last decade, the availability

of devices with a TEE has increased,

answering the need for securing the

execution of critical code on multi-purpose

devices. Most, if not all, mobile phones

include nowadays a TEE to support the

implementation of multiple security critical

use cases in parallel. The mobile phones

based on Qualcomm Snapdragon SoCs

typically implement QSEE as well.

Moreover, TEE implementations are also

present on devices like Smart TVs (e.g.

for DRM), set-top-boxes (e.g. for PayTV)

and even ECUs used by modern vehicles.

Still, the availability of a TEE on a

consumer networking product, like the

Linksys EA8300, is somewhat surprising.

Differently from Secure Boot, any use case,

other than providing an additional layer of

security, has not clearly emerged yet.

We’ve analyzed multiple IPQ40xx-based

products and found QSEE implemented on

all of them. However, this does not imply

that QSEE is actually actively used once

the device is fully initialized. For example,

the Linksys EA8300 is only communicating

with QSEE during boot. We believe the

IPQ40xx SDK includes QSEE by default and

therefore is therefore always initialized by

the Qualcomm bootloaders. This means,

an OEM like Linksys, may only have limited

control or insights whether QSEE is present

on a product or not.

We identified multiple critical vulnerabilities

for which the following CVEs were

assigned: CVE-2020-11256, CVE-2020-

11257, CVE-2020-11258 and CVE-2020-

11259. We successfully exploited all these

vulnerabilities and we were able to execute

arbitrary code within QSEE, effectively

compromising the security of this additional

layer of protection.

These software vulnerabilities can easily

be fixed using a software update, even to

devices already in the field. Therefore, we

decided to test if the Qualcomm IPQ40xx

chips are vulnerable to Electromagnetic

Fault Injection (EMFI). This type of attack

is able to break any software security

model by altering the expected behavior is

possible.

We determined after a week of testing that

these chips are indeed vulnerable and can

https://www.qualcomm.com/products/ipq4018

 7170

HITBMag | June 2021

be used by an attacker to execute arbitrary

code within QSEE without relying on any

software vulnerability.

As far as we know, this is one of the first

public examples, where hardware fault

injection is used to break the security

model of a TEE, by altering the intended

behavior of software. We reported both the

software and hardware vulnerabilities in

Qualcomm using a coordinated disclosure

process (Q3 2021).

Qualcomm indicated that fixes for the

software vulnerabilities were distributed

to their customers. However, they also

indicated that FI attacks are out of scope

of the chip’s threat model. Therefore, an

attacker capable of injecting EM glitches,

is always able break into QSEE, without

relying on any software vulnerability.

TARGET

Figure 1: Qualcomm IPQ4019 SoC

The Linksys EA8300 is a AC2200 Wi-Fi

Tri-Band Router. Some of the information

we used was obtained from Open WRT’s

website and FCCID’s website. This device

is designed around the Qualcomm IPQ4019

SoC which is shown in Figure 1.

Our interest was immediately sparked

after reading its product description as

it supports two of our favorite security

features: Secure Boot and TEE.

It’s always interesting to start analyzing a

new device in a black-box setting and with

much anticipation we were looking forward

to the activities ahead of us. We never know

what exactly to expect, but we may easily

end up into our favorite activity: identifying

and exploiting vulnerabilities.

Serial Interface

Hardware hacking often starts with opening

the device. The next step is scoping out

useful signals like the serial interface, which

often provides a (root) shell on consumer

networking products.

It would not be the first time such interface

is clearly marked on the on the printed

circuit board (PCB). For the Linksys

EA8300, the serial interface is present on

an unpopulated connector that’s easily

accessible as is shown in Figure 2.

Figure 2: Serial interface on the Linksys EA8300

Conveniently, the pin-out and other information required

for communicating with the serial interface can be found on OpenWRT’s website. This

spares us the probing of the pins for determining the required parameters. There’s no

harm done standing on the shoulders of others!

Boot Log

After connecting to the serial interface, we observe what’s send over this communication

interface by the device during boot. Immediately we are presented with a stream of

interesting print statements. The printing during boot, shown in Listing1, is done by the

boot stages developed by Qualcomm: PBL and SBL1.

Listing 1: Boot printing by PBL and SBL1

If you are familiar with Qualcomm-based devices, you may recognize the typical boot

flow where the PBL and SBL1 are printing timestamped log lines. If you’re interested,

more details about the boot process of Qualcomm-based mobile phones is provided by

this great blog post by Quarkslab.

However, the boot process of our target device has more commonalities with older

mobile phones, as shown in this advisory (2017) by Aleph Security.

Once the execution of the SBL1 completes, the control is passed to the U-Boot bootloader,

which is a common boot stage for loading Linux. Conveniently, we were able to break

into the U-Boot console by pressing a key during boot, which is shown in Listing2.

 7372

HITBMag | June 2021

Listing 2: Boot printing by U-Boot

The U-Boot console typically includes very useful com- mands. However, it really depends

on the device which com- mands are really available, as the manufacturer is free to add

or remove commands. Luckily for us, the U-Boot console on this target is fairly rich and

we are presented with lots of useful functionality.

ARM TRUSTZONE

In order to have a clear understanding of the different security boundaries, let’s quickly

revisit some TEE basics. The Rich Execution Environment (REE), or Non-secure World, is

the environment where the typical user applications are executed. The Security Extensions

of the ARMv7-A architecture, i.e. ARM TrustZone, introduce support for an additional

Trusted Execution Environment (TEE), or Secure World, which is the environment where

the security critical applications are executed.

The underlying platform, in other words the hardware, is responsible for providing

adequate functionality to securely implement both these environments. These two

environments are distinguished by the Non- Secure (NS) bit (i.e. SCR.NS). This bit set to

1 for execution of REE code and set to 0 when executing TEE code.

Figure 3: ARM TrustZone

The transition between these two execution modes is governed by the Monitor mode,

which traps the execution of Secure Monitor Call (SMC) instructions. More details about

this technology is available in ARM’s Architecture Reference Manual for the ARMv7-A

architecture.

When the IPQ40xx is released from reset, execution starts at the highest level of privilege.

This allows the code to have unrestricted access to the hardware.

The Primary Boot Loader (PBL), implemented in the SoC’s read-only memory (ROM),

loads the second stage bootloader (SBL1) into internal SRAM. The SBL1 is responsible

for several things, including initializing the external DDR, loading QSEE from flash and

loading U-Boot from flash.

It’s important to raelize that the PBL and SBL1 are executed at the highest privilege

level as they are responsible for loading the QSEE. Moreover, it’s likely that the U-Boot

bootloader is running at a much lower privilege as it’s mostly responsible for loading

Linux.

EXTRACTING QSEE BINARY

The U-Boot console provides a convenient and powerful environment for accessing the

flash. For example, we can use the smeminfo command in order to get an overview

of the flash partitions, which is shown in Listing3. The QSEE binary that we are after is

actually stored in a dedicated partition.

Extracting the flash contents is fairly easy using the com- mands provided by the U-Boot

console. First, we use the nand command to read the flash contents to volatile memory

(e.g. SRAM or DDR).

Then, we use the tftpput command to dump the flash contents from volatile memory

via the network to our TFTP server. This allows us to extract the entire flash without any

soldering.

Listing 3: U-Boot’s smeminfo command

 7574

HITBMag | June 2021

ANALYZING QSEE

The QSEE partition is actually a flat binary

that can be analyzed directly using your

favorite decompiler. Unfortunately, being

a flat binary, there is no meta data present

in the binary which could tell us about its

structure.

We know that the IPQ40xx processor

implements the ARMv7 architecture and

therefore we know to expect ARM AArch32

Little Endian (LE) code. We load the QSEE

binary into IDA Pro and select the ARM32

Little Endian architecture. We determined

that the loading address of the QSEE binary

is 0x87E80000 by analyzing the absolute

addresses used by the code.

The ARMv7 exception vector is found at the

start of the QSEE binary. It’s used to handle

the processor’s exceptions, including the

exception raised by a SMC instruction. This

mechanism is standardized and therefore

we could easily define the correct names

for each exception handler as is shown in

Figure 4.

The code responsible for handling the

SMC instruction is easily identified by

following the Software Interrupt exception

handler. This code extracts the SMC ID

from register R0 in order to determine

which SMC handler routine should be

called. We determined that all SMC handler

routines are defined in a table located at

address 0x87EB465C in the QSEE binary

as is shown in Figure 5.

Each of the SMC handler routines can

be called using their unique SMC ID,

which is also present in the table. For

example, the SMC handler routine tzbsp_

pil_init_image_ns can be called by using

the SMC ID 0x805. The table also contains

Top: Figure 4: QSEE exceptions; Bottom: Figure 5: ARM TrustZone

other useful information for reverse

engineering the code, like the name of the

SMC handler routine.

RANGE CHECKS

The memory is partitioned in Secure and

Non-secure mem- ory, using hardware

controllers that are configured when the

TEE is initialized. This is likely done by the

SBL1 bootloader during boot.

All code and data related to QSEE, including

any Trusted Application (TA), should be

stored within secure memory. In other

words, none of the code and data used by

QSEE should be accessible by the REE.

The REE passes the SMC handler routine’s

arguments by register. For example, ARG1

is stored in register R1, ARG2 is stored in R2

and so on. Buffers are passed by reference

using memory that’s accessible by both the

REE and TEE.

Typically, this is simply just non-secure

memory. As QSEE has no knowledge of the

REE’s virtual mapping, all pointers passed

by the REE point to physical memory.

It’s the responsibility of QSEE to carefully

check the arguments received from the

REE. For example, QSEE should check

whether the buffer passed by the REE,

described by a pointer and a size argument,

is not located within secure memory.

Otherwise, it may be possible to read or

write secure memory from the REE. While

analyzing the SMC handler routines, we’ve

identified the functions responsible for

performing these range checks as is shown

in Figure6.

The function tzbsp_is_nsec_range

validates the buffer passed by the REE Figure 6: Usage of a range check

 7776

HITBMag | June 2021

using the is_allowed_range function. This function uses a table with secure ranges to

determine what memory should be considered secure memory.

This function checks, among a few other things, if the start of the buffer (i.e. pointer) and

end of the buffer (i.e. pointer + size) are overlapping with secure memory as is shown in

Figure 7 below.

The table, that defines three secure ranges, is shown in Figure 8 below.

This means, that whenever thetzbsp_is_nsec_range function is used to check the SMC

handler routine’s arguments, the buffer passed by the REE cannot overlap with: 0x0 to

0x7ffffff, 0x90000000 to 0xffffffff and 0x87E80000 to 0x87ffffff. In other words, buffers

are only allowed when they are between 0x80000000 to 0x87E80000 and between

0x88000000 to 0x90000000. Until now, everything looks secure!

Figure 7: is allowed range function

Figure 8: Secure Range Table

QSEE SW VULNERABILITIES

It’s expected that functionality exists

to check the arguments passed to the

SMC handler routines. However, it would

definitely not be the first time that such

functionality is not used, or used incorrectly.

Therefore, it’s always a good idea to start

analyzing the correct usage of such checks

first.

Long story short, we’ve identified several

SMC handler routines where the arguments

are not properly checked. There were

either no range checks, or they were used

incorrectly. This resulted in the identification

of 4 critical vulnerabilities.

• CVE-2020-11256 tzbsp blow fuses

and reset

• CVE-2020-11257 usb calib

• CVE-2020-11258 tzbsp version set

• CVE-2020-11259 tzbsp version get

The above vulnerabilities require the ability

to issue an SMC request to QSEE, either

directly or indirectly.

“Directly” can be achieved by executing any

code in the REE with sufficient privileges to

execute an SMC instruction (i.e. kernel or

even higher privileges).

“Indirectly” can be achieved by leveraging

functionality that’s already present on the

device (i.e. a driver). An attacker that’s able

to successfully exploit the vulnerabilities, is

able to:

• get unrestricted access to the

underlying hardware

• gain full control of QSEE and the

assets it protects

• escalate privileges in the REE (e.g.

from user to kernel)

• bypass any security features

implemented by QSEE (e.g. IPS, AV)

As far as we can tell, the Linksys EA8300

does not use QSEE for anything relevant

during runtime. Also, no Trusted Application

(TA) is installed.

This means the attack surface from an

unprivileged REE application is likely

minimal (i.e. QSEE can only be accessed by

executing SMC instructions directly).

More information about the exploitation of

these vulnerabilities were already disclosed

duringZer0con 2021. We will disclose this

information also on the Raelize Research

Blog.

These software vulnerabilities can be

easily fixed and Qual- comm indicated that

their customers were informed about the

availability of such fixes. In anticipation

of the fixes, we decided to explore the

presence of a hardware vulnerability.

QSEE HW VULNERABILITIES

We decided to analyze the resilience of

this chip towards fault injection attacks. We

used Electromagnetic Fault Injection (EMFI)

to inject glitches into the chip in order to

affect its intended behavior.

This allows us to change the software

that’s executed by the IPQ40xx processor

in order to bypass or alter the security

measures in software (e.g. range checks).

Effectively, this allows us to break into

QSEE from the REE without relying on any

software vulnerability.

 7978

HITBMag | June 2021

Setup

We use commercially available tooling to perform the EMFI attack. An overview of the

setup is shown in Figure 9 and a photo of the setup is shown in Figure 10.

Figure 9: EMFI setup (block diagram)

Figure 10: EMFI setup

We use software to program both the

Riscure Spider and the Riscure XYZ Table

before each experiment. This allows us

to control the glitch parameters (position,

moment in time and glitch power) completely

automatically. To reset the target, we use a

relay to switch power supply of the device.

We perform the EMFI attack by placing the

EM probe directly on the chip’s surface. In

order to do so, we opened up the target

and removed the chip’s heatsink. We made

no other physical (invasive) modifications.

Characterization

We started with a characterization phase

aimed to find a location on the chip’s

surface where we can influence the target.

We implemented test code as a U-Boot

standalone application, hence running with

REE privileges (i.e. NS-bit is 1). This allows

us to efficiently explore the resilience of

the chip in a controlled environment. We

use the XYZ stage to move the EM probe

automatically across the chip’s surface in

a 10x9 grid in order to find a vulnerable

location.

The test code implements the following

steps:

1. Set register R0 to 0

2. Set trigger signal high

3. Execute 10,000 add instructions

(i.e. add R0, R0, #1)

4. Set trigger signal low

5. Print the value stored in R0 on

the serial interface

To synchronize the attack, we use the GPIO

pins driving the target’s LEDs as a trigger to

time the attack. We time the glitch so that

it’s injected when the add instructions are

executed. If the test code prints a value

different than the expected value (i.e.

0x2710), we consider the glitch successful,

as the glitch somehow altered the intended

execution of the code.

After performing roughly 20,000

experiments we observed different outputs

which we grouped as is shown in Table 1.

Table 1. Characterization results

Not all outputs we observed are shown,

just a few interesting ones.

• The C-00 experiments give the expected

output, indicating the glitch did not affect

the execution of the test code.

• The C-01 experiments showed no

output as the chip muted, indicating

the glitch was likely too strong, leaving

the system in an unresponsive state.

• The C-02, C-03 and C-04 type of

experiments show a different counter

value than expected. This indicates

that the injected glitch affected the

expected behavior of the software.

We consider these successful

experiments.

• The C-05 and C-06 experiments

caused a processor exception. These

are interesting as well as they are an

indication that we affected the chip’s

intended behavior, but in a crash, as

the system was unable to continue

execution reliably.

 8180

HITBMag | June 2021

We plotted the results based on their classification (see Figure11). Next to the plot there

is the orientation of the chip. We observe that all successful results occurred in a specific

area on the chip’s surface.

We assume that the location that allows us to inject successful glitches into the REE (i.e.

U-Boot) will also yield successful glitches for the TEE (i.e. QSEE) as both code bases are

executed by the same processor. Therefore, we simply fix the probe on a location where

we observed a successful glitch. This allows us to continue testing the TEE execution

without moving the probe, effectively removing the spatial parameter from the glitch

parameter search space.

Bypassing range checks

We decided to bypass the SMC handler routine argument check for tzbsp fver get
version() to demonstrate the effectiveness of fault injection to break into QSEE.

This function is decompiled in the (simplified) pseudo-code by IDA Pro as is shown in

Listing 4. The is_ree_range() function is used to verify if the argument a2 points to a

16-bytes memory range fully contained in REE memory.

Our goal is to bypass the restriction enforced by this function using EMFI in order to write

a 0 to an arbitrary location. Such writes are performed by TEE code, yielding a controlled

NULL write to arbitrary TEE memory.

Being able to bypass the range checks, it’s likely that the security of QSEE is compromised

and that arbitrary code execution can be achieved.

In order to access the tzbsp_fver_get_version() function, we use the test code,

implemented as a U-Boot standalone application (see Listing 5).

Figure 11: Experiments plotted across the chip’s surface

Listing 4: Decompiled tzbsp fver get version

function
Listing 5: Decompiled tzbsp fver get version

function

We inject the EM glitch between the moment the trigger signal is set and the trigger

signal is unset. During this time frame, we execute the SMC call for the first time using

specifically chosen arguments.

• The argument arg1 is set to a value so that the do/while loop shown previously in the

decompiled code does not write to the a2 pointer.

• The argument arg2 is set to a TEE memory address where configuration and flags

for the secure memory range (0x87e80000 to 0x87ffffff) are stored. If bit 1 of the

flag field is not set the secure range is ignored. In other words, if we unset bit 1, the

is ree range() functions does not enforce protection for the given range. This, in turn,

allows to pass any physical address to SMCs, including TEE, potentially allowing for

unintended access to TEE memory.

• The argument arg3 is set to 4 to satisfy a check in the SMC command’s code.

• The argument arg4 is not used.

We execute the same SMC command a second time, with the same destination address,

without injecting any glitch, in order to verify whether the secure range is really disabled

and our attack was successful.

Moreover, we dereference the secure range flag field from REE, in order to verify that the

malicious TEE write actually happened.

It should be noted that, due to the (mis)configuration of this specific device, we are able

to read TEE memory from the REE. Typically, this should not be possible, otherwise any

secrets handled by the TEE are exposed to the REE.

For this particular device this is not an issue because as far as we know no secrets are

handled by the TEE. We leverage this capability to double verify our test as we can read

the TEE memory address before and after the attack.

 8382

HITBMag | June 2021

The output we receive back consists of:

• Return value of the 2nd time we call

the SMC command

• Return value of the 1st time we call the

SMC command

• Dereferenced secure range flag field

• Marker (i.e. AAAA)

• Marker (i.e. BBBB)

We anticipated the outputs of our attack code as outline in Table2.

We measured the trigger

signal using an oscilloscope

and determined it’s

approximately 5.875

microseconds (Fig 12). Our

target, the range check, must

be executed somewhere

within this attack window.

Therefore, we inject all our

glitches within this attack

window.

We performed roughly

300,000 experiments where

we inject EM glitches within

the entire attack window.

We give each experiment a

randomized power between

0% and 100%.

The EM probe itself is fixed

to a vulnerable location on

the chip’s surface that we

identified earlier. This entire

campaign lasted roughly 12

hours.

We plotted all experiments

as shown in Figure13.

The expected results are

plotted in GREEN, processor

exceptions are shown in

MAGENTA, mutes are shown

in YELLOW and successful

results are shown in RED.

Table 2. Anticipated responses

Figure 12: Trigger signal

Figure 13: Attack Results

The glitch delay, shown on the X-axis, is the time we wait before we inject the glitch

relative to the moment in time where we observe the trigger signal. The glitch power is

a percentage proportional to the maximum power of our EM probe.

If we simplify the plot, we observe three interesting areas.

• At area 1 we observe many (REE) processor exceptions, likely caused by the fact

that we inject the glitch too soon before the context switch to the TEE is made.

• At area 2 we observe many mutes and successful exper- iments, indicating at this

moment the code is executed that we attack.

• At area 3 we observe many (REE) processor exceptions, likely caused by the fact

that we inject the glitch after the context switch to the REE is made.

The success rate with our initial glitch parameters (location, moment in time and power)

is 0.05% or, differently said: 1 successful experiment every 5 minutes.

However, if we tune the glitch parameters (i.e. glitch delay and glitch power) to area 2, the

success rate is 5%. Differ- ently said, 1 successful experiment every 20 seconds. More

interestingly, we are able to bypass the range range check with a very high success rate.

We feel comfortable saying that we are able to bypass all the range checks used by

QSEE using this method.

Achieving code execution

From exploiting the software vulnerabilities mentioned ear- lier in this article, we know

that bypassing the range checks is sufficient for executing arbitrary code within QSEE.

The range table used by the range check is stored in writable memory and therefore we

can leverage restricted writes to disable the range checks entirely.

Then, we can leverage a combination of QSEE handler routines in order create an

arbitrary R/W primitive. This allows us to copy any data to and from QSEE memory. Using

this R/W primitive we can change the data used by a specific QSEE handler routine

in order to achieve arbitrary code execution at the same privilege level as QSEE. The

process is as follows:

• Store shellcode in non-secure memory at 0x82000000

• Modify the MMU configuration to clear the XN-bit for 0x82000000

• Set the function pointer used by tzbsp_exec_smc to 0x82000000

• Use tzbsp_exec_smc to jump to 0x82000000 in order to execute the shellcode

More information about this exploitation approach will be provided on the Raelize

Research Blog on the Raelize website.

 8584

HITBMag | June 2021

CONCLUSION

We’ve identified both software and hardware vulnerabilities, affecting

Qualcomm’s TEE named QSEE, as implemented on Qualcomm IPQ40xx-based

devices. These vulnerabilities enable an attacker to execute arbitrary code at

the highest privilege level. We reported all vulnerabilities to Qualcomm using

a responsible disclosure process.

We’ve identified the software vulnerabilities by reverse engineering the

QSEE binary that we’ve extracted from multiple devices. Even though these

vulnerabilities were critical, they can be easily fixed using a software update,

which can be distributed to devices already in the field. Therefore, we

anticipate these vulnerabilities to be fixed in the future.

However, the hardware vulnerability, which can be exploited using EM

glitches, cannot be easily mitigated, especially not for devices already in

the field. Qualcomm indicated to us that these types of attacks are outside

of the IPQ40xx’s threat model. Therefore, an attacker capable of injecting

EM glitches, will always be able to break into QSEE, without relying on any

software vulnerability.

The impact of software vulnerabilities is typically much larger than hardware

attacks that require physical access to a device. Mass exploitation is for

example typically not possible.

Nonetheless, we like to stress that hardware attacks should not be immediately

omitted from the threat model of a device. They are often used by attackers to

get access to secured code or data in order to perform subsequent research

during which easier to exploit (software) vulnerabilities are identified. □

HOW I FOUND
16 MICROSOFT
OFFICE EXCEL
VULNERABILITIES
IN 6 MONTHS
Quan Jin

INTRODUCTION
At the beginning of 2020, I decided to learn something

about fuzzing. I first read some papers about fuzzing,

include “Finding security vulnerabilities with modern

fuzzing techniques” . After learning the basic concepts

about fuzzing, I decide to do some fuzzing job on Windows

platform. My goal was to get a CVE number from Microsoft

through fuzzing.

This could be your product.

Contact us for branding opportunities.
editorial@hackihackinthebox.org

http://archive.hack.lu/2018/Slides_Fuzzing_Workshop_Hack.lu_v1.0.pdf
http://archive.hack.lu/2018/Slides_Fuzzing_Workshop_Hack.lu_v1.0.pdf

 8786

HITBMag | June 2021

Fuzzers

There are many fuzz tools for linux platform, such as AFL, LibFuzzer and Honggfuzz, but

there are less fuzz tools on Windows. WinAFL is a great tool, however it cannot handle

large and complex software such as Microsoft Office.

Over the past three years, hundreds of bugs on Windows were found by WinAFL, which

means there are basically no chance to find more bugs through it. Some researchers

make some improvements on WinAFL, and find more bugs based on their custom WinAFL.

From my perspective, I want to choose a target which is less targeted by WinAFL and I’m

familiar with this target.

Choose a Target

There are several candidates: Adobe Reader, Internet Explorer and Microsoft Office.

Let’s review them one by one.

• Adobe Reader was heavily fuzzed by WinAFL at the year of 2018

• Internet Explorer was heavily fuzzed by Domato during 2017, 2018 and 2019

• Few people have done effective Office fuzzing work, but there do have some, such

as Jaanus Kaap’s presentation at POC2018

It seems that Microsoft Office is a good candidate. But here comes two questions:

1. Is it possible to find a bug in

Microsoft Office on several

months for a newcomer in

fuzzing?

2. Microsoft Office consists of

multiple components, should I

choose Word, PowerPoint, Excel

or another component to fuzz?

Let me first answer the first question. I’m a

newcomer in fuzzing, but I have extensive

experience in office vulnerability analysis.

So, it’s possible for me to find a bug in

Microsoft Office.

To answer the second question, I counted

the Microsoft Office CVE numbers and their

distribution from 2017 to 2020. The initial

statistical time is up to April 2020, I updated

the statistical data in June 2020.

Here is the up to June 2020 statistical results:

Note: The column “Office” represents Office vulnerabilities that do not specify specific components.

Which means that they may be Word, PowerPoint, Excel, Outlook or other vulnerabilities.

We can learn something from the table:

1. Around 2018, Microsoft made a

change to the disclosure name

of Office vulnerabilities to make

the classification more detailed;

2. From 2017 to 2020, the Excel

component has the most

vulnerabilities almost every year;

3. From 2017 to 2020, the

PowerPoint component has the

least vulnerabilities almost every

year

If a security researcher invests the same

amount of time in security testing for each

Office component, Excel is obviously the

most hopeful one, and PowerPoint is the

least. Word and Outlook are in the middle.

If I can choose only one target, it will be

Excel.

METHODOLOGY AND
IMPLEMENTATION

Now, I have selected Excel as my target.

Before starting fuzzing, I need to evaluate

the feasibility of the basic steps involved

in Excel fuzz. A common fuzzing process

usually includes the following stages:

1. Seeds - How to collect seeds?

2. Mutator - How to mutate?

3. Detection - How to catch

exceptions?

4. Triage - How to classify and de-

duplicate crash files?

5. Reproducer - How to reproduce

the crash?

6. Report - How to report the

vulnerability to the vendor?

Let’s examine them one by one.

Seeds

Before fuzzing Excel, I need to collect some

Excel files as seeds. After counting the file

types involved in the Excel vulnerabilities

announced by ZDI in the last 3 years, I

realized that the proportion of vulnerabilities

in the OpenXML format is far less than that

of the OLE2 format, So I began to focus on

xls files. After some exploration, the source

of my seeds is as follows:

1. Contextures (https://www.

contextures.com)

2. Vertex42 (https://www.vertex42.

com)

3. Excel files provided by Jaanus

Kaap (https://foxhex0ne.com)

Many fuzz tutorials tell us that the more files

are not the better, nor the bigger the better.

So I need to minimize the collected Excel

files. If the fuzz tool is WinAFL, you can use

the built-in components to distill the seed

files. I don’t want to use WinAFL, so I need

to implement this function by myself.

While trying to solve the above problem, I

saw two blogs by Jaanus Kaap:

• Let’s get things going with basics of

file parsers fuzzing

• Let’s continue with corpus distillation

Unfortunately, at the time of writing this

presentation, these blogs are no longer

accessible, but I read these two articles in

detail at that time.

Although it is no longer possible to obtain

relevant knowledge from the author’s blog,

Jaanus Kaap once shared his experience

at the POC2018 Conference entitled □

https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://research.checkpoint.com/2018/50-adobe-cves-in-50-days/
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/domato
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2018/12/on-vbscript.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1947

 8988

HITBMag | June 2021

“Document parsers ‘research’ as passive

income.”

However, the ideas of corpus distillation

are similar between different tools: for the

software you want to fuzz, first select a

module, then use the tools and initial seeds

to make statistics on the module coverage.

The goal of this is to select the smallest

number of files with the highest module

coverage, and hope that these files are as

small as possible.

With the help of static count and dynamic

execution, I distilled a set of Excel seeds in

an acceptable time as the initial seeds for

my fuzzing.

Mutation

Mutation algorithm is an important part

of fuzz, and its quality directly affects the

result of fuzz.

I transplant the following mutation

algorithms in Honggfuzz:

• mangle_Bit

• mangle_IncByte

• mangle_DecByte

• mangle_NegByte

• mangle_Bytes

• mangle_ASCIINum

• mangle_CloneByte

• mangle_AddSub

For the remaining mutation methods in

Honggfuzz, after careful evaluation, I chose

not to transplant.

I also integrate all the values of the byte’s

replacement part of AFL, LibFuzzer and

Honggfuzz, and construct a mutation value

replacement table covering these three

fuzzers.

Detection

The detection part can be simply abstracted

into automatic start of the program, open

the file, monitor process and catch the

exception. There are many good solutions

on Github, which are generally implemented

by winappdbg or pydbg.

Vanapagan by Jaanus Kaap is a good

example.

In order to improve the catch rate of heap

memory access exceptions, I use Global

Flags to enable Page Heap for Excel

process.

Triage

During the fuzzing process, hundreds

of crash files will be collected, how to

effectively classify them is a science.

Based on existing experience, I mainly pay

attention to the following conditions:

1. Access violation: the exception

code is 0xC0000005.

Microsoft does not accept stack

exhaustion vulnerabilities such

0xC00000FD;

2. Non-null pointer reference

exception: Microsoft does not

accept null pointer reference

vulnerabilities

Based on the above considerations, my

classification rule is to distinguish a null

pointer reference from a non-null pointer

reference, distinguish access violation

from other exception types. Under this rule,

those non-null pointers with an exception

code of 0xC0000005 are the crashes that

I need to focus on.

My classification rule for Microsoft Office Excel exceptions for Non-null pointer reference

is as follow:

• Read access violation

 » Out-of-bound read

 » Use-after-free read

• Write access violation

 » Out-of-bound write

 » Use-after-free write

In terms of real-time synchronization of the fuzz results across multiple virtual machines,

I use a FTP server which serves in a virtual machine as the result server, and install the

pyftpdlib module in server and clients.

Reproducer

Not all crash files can be reproduced. So I write a reproducer based on my fuzzer. This

reproducer is used to reproduce the crash results in various full patch Office environments

and record the reproduced results. I make multiple Office environments to reproduce

the crash files. Including but not limited to these:

• Office 2007 - no patch & full patch

• Office 2010 - no patch & full patch

• Office 2013 - no patch & full patch

• Office 2016 - no patch & full patch

• Office 2019 - no patch & full patch

For those reproduced by the reproducer, I will perform some manual check. If both pass,

these files are regarded as valid vulnerability files.

Report

When a crash file is successfully reproduced, it can be automatically generated a

professional report with the help of BugId. It should be noted that BugId can only run on

Windows 10, so a “Windows 10+Office environment” with the latest Office and full patch

version need to be made.

Below is the BugId report I generate for one of my Excel vulnerabilities:

Once you have the BugId report, you can submit the vulnerability to MSRC:

• MSRC Researcher Portal

• The specific format of the vulnerability report can be referred to here

• The poc and BugId reports can be uploaded as attachments.

https://github.com/JaanusKaapPublic/Vanapagan
https://msrc.microsoft.com
https://www.microsoft.com/en-us/msrc/bounty-example-report-submission

 9190

HITBMag | June 2021

EQUIPMENT

I have a laptop for reproduction and report generation. These are all my fuzzing equipment.

My entire fuzz machine is only one computer with the following configuration:

• i7-8700 (12 Cores)

• 16G DDR3 RAM

• 3.2GHz Primary Frequency

• 1T HDD

PROBLEMS

Throughout the process, I encountered at least the following problems:

• Dialog click

• Virtual machine size

• Speed of execution

• Version switching

• Fuzz strategy

• Crash management

Dialog Click

The Excel software has various dialog boxes during the excuting process. Some dialog

boxes such as “Safe Mode” can be resolved by cleaning the registry, while others need

to be manually clicked.

My way of solving these dialog boxes are as follows:

• Before each start of the file (or the end of the file), clean up the relevant registry

item:

 » HKCU\Software\Microsoft\Office\Version\Excel\Resiliency

• Add a simple simulation click tool during the fuzzing, such as starting a separate

thread for window enumeration and dialog click. A good example is cuckoo sandbox

human plugin:

These methods can only handle most of the dialog box click problems, there are still

some dialog boxes that I cannot solve, but there is no need to be perfect, it is enough to

do these.

Virtual Machine Size

I use VMware to fuzz. During the fuzzing process, a large number of files are generated in

each virtual machine, these files will gradually increase the size of each virtual machine.

Over time, the disk overhead of the host will increase significantly(usually several to

dozens of GBs per virtual machine).

In order to solve this problem, you must ensure that the current fuzzer has effectively

cleaned up the files generated by the previous fuzz before starting the next file, mainly

the following folders:

• %AppData%\Local\Temp

• %AppData%\Roaming\Microsoft\

Office\Recent

• %AppData%\Roaming\Microsoft\

Windows\Recent

Otherwise, once the number of fuzz

executions increases, the size of the virtual

machine will explode. As a result, the fuzzer

will stop.

In addition to above operations, I also

use Dism++ tool to regularly clean up the

temp files inside each virtual machine,

and configure the virtual machine to

automatically clean up the disk after

shutting down.

In this way, the size of each virtual machine

will be automatically reduced after

shutdown, and the size of each virtual

machine can be restored to the original

size after a fixed interval (such as a few

weeks), thus creating a basis for continuous

fuzzing.

Speed of execution

When other conditions remain unchanged,

the speed of fuzzing directly affects the

output efficiency.

After some testing and evaluation, I think

the main factors affecting Excel fuzz are as

follows:

• File size

 » In the corpus distillation stage, I have
selected as small a seed as possible
while ensuring coverage. From a
statistical point of view, for Excel,
files smaller than 400KB are more
likely to produce vulnerabilities.

• Office version

 » There are many versions of Office.
The higher the version, the slower
the opening speed. From another
perspective, the higher the version,
the larger the amount of code and the
number of potential vulnerabilities.
I need to make some trade-offs.
After a period of evaluation, I decide
to focus on vulnerabilities which
exists from Office 2007 to Office
2019.

 » After making this choice,
I can speed up fuzzing by choosing
to execute the file in a lower Office
version. Although Office 2007
/ Office 2010 have successively
withdrawn from the support list,
they are useful if the crash file which
collected in these environments can
affect the latest version of Office
software.

 » The main fuzz environment I finally
chose is Office 2010. After many
fine-tuning, my fuzzer can be
stabilized on 10 virtual machines,
and each virtual machine executes
an average of 15w files per day, that
is, runs about 15w files per day.

• The stability of fuzzer

 » If a fuzzer is unstable and crashes
itself when executing, that is sad.
Some fuzzers that use winappdbg
may have this problem on x64
environment, so I mainly run my
fuzzer on x86 environment. After
observing and improving for a
long period of time, my fuzzer has
achieved relatively good stability, it
can run for weeks without problems.

https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py
https://github.com/Chuyu-Team/Dism-Multi-language/releases

 9392

HITBMag | June 2021

• Disk IO

 » This problem was discovered
through observation. My fuzzing
environment uses HDD. When using
VMware to open multiple virtual
machines (I open up to 11 virtual
machines on a single computer),
disk IO will become very stuck.

 » Due to the limitation of disk IO, the
fuzzing of inner virtual machines will
cause VMware itself to hang on for a
long time, which significantly affect
the fuzz speed. Sometimes the
fuzzing in a single virtual machine
ends abnormally.

 » It is necessary to clean up the
environment in the virtual machine
and restart the fuzzing, or restart the
related virtual machine to resume
the fuzzing. This process is a waste
of time. I think SSD will improve a
lot.

• CPU Cores, RAM and Primary

Frequency

 » CPU Cores, RAM and Primary
Frequency: The number of CPU
cores and the RAM capacity directly
determine the maximum number
of virtual machines that can be
opened at the same time. The bigger
the two indicators, the better. The
primary frequency directly affects
the opening speed of the program.
The bigger the primary frequency,
the better.

Version Switching

During the fuzzing, it is necessary to

consider the inconsistency of processing

the same file by different architectures (x86

and x64), different patches(no patch and

full patch), and different language versions

(Chinese and English). I mainly consider

the following scenes:

• Files that cannot be triggered on x86

can be triggered under x64;

• Files that cannot be triggered in a lower

patch environment can be triggered in

a higher patch environment;

• Files that cannot be triggered in the

English environment can be triggered

in the Chinese environment

Therefore, I test the above scenes with

each set of seed files, and gain some extra

crashes.

Fuzz Strategy

I think fuzz strategy is the most important

part of my Excel fuzzing. What I have is a

machine consisted of these:

• i7-8700 (12 Cores)

• 16G DDR3 RAM

• 3.2GHz Primary Frequency

• 1T HDD

What I want are:

1. Obtain as much vulnerabilities as

possible in the shortest time

2. Find vulnerabilities that exist in

all versions of Office

This forces me to do many thoughts and

explorations on how to configure fuzz

strategies, my experience on fuzz strategies

including but not limited to the following:

• Skip the first 512 bytes of the header of

the OLE2 file during mutation to improve

the effectiveness of the mutation;

• Use an older version of Office for

fuzzing to improve the speed of

fuzzing;

• Use smaller Excel files for fuzzing to

increase the speed of fuzzing;

• Use Google to collect xls files which

were made with old versions of Excel

in the 1990s and 2000s, and add them

to the initial seed collection;

• Select Office attack surface that

may cause problems based on my

experience (e.g. pivot table), then

select related files for fuzzing;

• For a period of time, select the Excel

files that is most likely to cause

problems in the current results, and

increase the proportion of them,

because the file that causes a problem

often causes other similar problems;

• For the same files, only use one

mutation algorithm for fuzzing within

a period of time, and continue to

observe the effectiveness of the

current mutation algorithm. If there are

still more new outputs after a week,

continue to fuzz, if there are almost no

new outputs after a week, switch to

another mutation algorithm;

• Categorize the size of seed files, such

as 0-100KB, 101-400KB, 401-1024KB,

>1MB, and test each seed set of a

specific size in a specific period of

time;

• The same files will be tested in full

patch and no patch environments, in

Chinese and English environments

and in x86 and x64 environments

Crash Management

As more and more results are obtained

from fuzzing, how to manage these crash

files has become a very important thing. I

mainly consider the following conditions:

• How to merge the same cases

generated in different fuzz machines;

• How to exclude crash cases that

have appeared before from the newly

added crash files

Regarding how to merge the same cases

generated in different fuzz machines, I have

explained in the section “Methodology &

Implementation - Triage” above.

I use a FTP server to receive crash files

across virtual machines, if a crash file has

the same module and the same crash

address with a previous file, the server will

reject it.

Every once in a while, I will drag out all the

crash files in the FTP server and reproduce

them in a full patch environment with the

help of my reproducer (I make several full

patch environments, only one is frequently

used).

Only those newly appeared crash files need

to be examined. Therefore, I use a python

script to save all crash files processed by

the reproducer to a local “database”(this

database is just a simple folder list, but it is

very effective).

When the number of crash case in the

database becomes more and more, the

newly appeared crash files will be fewer and

fewer, at the same time, the vulnerability

rate of these new files will be higher and

higher.

 9594

HITBMag | June 2021

RESULTS

After half a year of fuzzing (from 2020.05 to 2020.10), I reported a total of 20 Excel

vulnerabilities to Microsoft.

Two of them were marked as “Valid” but will not be fixed immediately, one was marked

as “Won’t fix”, and the remaining 17 vulnerabilities are all fixed, and helped me receive 16

CVE acknowledgements from Microsoft (one of them is duplicate).

Note: “ALL” refers to Office2010, Office2013, Office2016, Office2019

Note: Case 61461 has been fixed in the January 2021 patch but it is duplicate, I have not tracked down

its corresponding CVE number.

Below I share some cases found by my fuzzer.

• CVE-2020-1494 is an unallocated memory write issue in excel.exe.

• CVE-2020-17126 is an out of bound read issue in excel.exe.

• CVE-2020-17127 is an use after free read issue in excel.exe, it is a nice UAF.

CVE-2020-1494
(12a8.da0): Access violation - code c0000005 (first/second chance not available)
For analysis of this file, run !analyze -v
eax=02f842ec ebx=53348fc8 ecx=00004f00 edx=00004f00 esi=02f7f3ec edi=41004f00
eip=6a7b2dae esp=02f7f36c ebp=02f7f38c iopl=0 nv up ei pl nz na po cy
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00210203
VCRUNTIME140!memmove+0x4e:
6a7b2dae f3a4 rep movs byte ptr es:[edi],byte ptr [esi]

0:000> dc edi
41004f00 ???????? ???????? ???????? ???????? ????????????????
41004f10 ???????? ???????? ???????? ???????? ????????????????
41004f20 ???????? ???????? ???????? ???????? ????????????????
41004f30 ???????? ???????? ???????? ???????? ????????????????
41004f40 ???????? ???????? ???????? ???????? ????????????????
41004f50 ???????? ???????? ???????? ???????? ????????????????
41004f60 ???????? ???????? ???????? ???????? ????????????????
41004f70 ???????? ???????? ???????? ???????? ????????????????

CVE-2020-17126
(ddc.1678): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=5d1a10b8 ebx=00ce8354 ecx=000000b8 edx=00000150 esi=5d1a1000 edi=4e19cf48
eip=657f36fe esp=00ce6794 ebp=00ce67ac iopl=0 nv up ei pl nz na po cy
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010203
VCRUNTIME140!memmove+0x4e:
657f36fe f3a4 rep movs byte ptr es:[edi],byte ptr [esi]

0:000> !heap -p -a edi
 address 4e19cf48 found in
 _DPH_HEAP_ROOT @ d01000
 in busy allocation (DPH_HEAP_BLOCK: UserAddr UserSize - VirtAddr VirtSize)
 5bba3b94: 4e19cea8 158 - 4e19c000 2000
 5873ab70 verifier!AVrfDebugPageHeapAllocate+0x00000240
 770090bb ntdll!RtlDebugAllocateHeap+0x00000039
 76f5349d ntdll!RtlpAllocateHeap+0x000000ed
 76f5214b ntdll!RtlpAllocateHeapInternal+0x000006db
 76f51a46 ntdll!RtlAllocateHeap+0x00000036
 5467cadf mso20win32client!Ordinal951+0x00000034
 ...cut...

0:000> !heap -p -a esi
 address 5d1a1000 found in
 _DPH_HEAP_ROOT @ d01000
 in busy allocation (DPH_HEAP_BLOCK: UserAddr UserSize - VirtAddr VirtSize)
 24d62270: 5d1a0f58 a8 - 5d1a0000 2000
 5873ab70 verifier!AVrfDebugPageHeapAllocate+0x00000240
 770090bb ntdll!RtlDebugAllocateHeap+0x00000039
 76f5349d ntdll!RtlpAllocateHeap+0x000000ed
 76f5214b ntdll!RtlpAllocateHeapInternal+0x000006db
 76f51a46 ntdll!RtlAllocateHeap+0x00000036
 5467cadf mso20win32client!Ordinal951+0x00000034
 ...cut...

 9796

HITBMag | June 2021

LIMITATIONS

For now, my fuzz method has the following shortcomings:

1. As mentioned earlier, in order to improve the speed and efficiency of fuzzing,

I selectively ignored some potential vulnerabilities in terms of strategy (such

as vulnerabilities only in the newer Office version). The fuzz method in this

presentation is aimed at the vulnerabilities that affect all Office versions. Due

to the limitations of my testing methodology, those vulnerabilities that only

exist in the latest version of Office but not in the lower version of Office cannot

be found through my fuzzing method;

2. If the current disk can be replaced with SSD, the file read/write speed will be

significant increase, which can improve the fuzzing speed;

3. The mutation algorithm can still be improved. According to observations, after

transplanting the Honggfuzz mutation algorithm to my custom fuzzer, the fuzz

CVE-2020-17127
(518.1010): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=049c6e94 ebx=0429cd90 ecx=04a20e28 edx=01700000 esi=049c6dc8 edi=11bea880
eip=2fadc12e esp=006f1fbc ebp=006f24ac iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00210246
Excel!Ordinal40+0x19c12e:
2fadc12e 8b01 mov eax,dword ptr [ecx] ds:0023:04a20e28=????????

1:014> !heap -p -a ecx
 address 04a20e28 found in
 _DPH_HEAP_ROOT @ 1701000
 in free-ed allocation (DPH_HEAP_BLOCK: VirtAddr VirtSize)
 4952d00: 4a20000 2000
 61e0adc2 verifier!AVrfDebugPageHeapFree+0x000000c2
 77d99913 ntdll!RtlDebugFreeHeap+0x0000003e
 77cdfb7e ntdll!RtlpFreeHeap+0x000000ce
 77cdfa46 ntdll!RtlpFreeHeapInternal+0x00000146
 77cdf49e ntdll!RtlFreeHeap+0x0000003e
79645cc3 mso!Ordinal149+0x000078ef
...cut...

1:014> u eip
Excel!Ordinal40+0x19c12e:
2fadc12e 8b01 mov eax,dword ptr [ecx]
2fadc130 51 push ecx
2fadc131 ff5008 call dword ptr [eax+8]
2fadc134 c3 ret
2fadc135 a130039c30 mov eax,dword ptr [Excel!DllGetLCID+0xd1ef7 (309c0330)]
2fadc13a 050c030000 add eax,30Ch
2fadc13f 833800 cmp dword ptr [eax],0
2fadc142 7468 je Excel!Ordinal40+0x19c1ac (2fadc1ac)

output has increased significantly, which shows that an effective mutation

algorithm can greatly improve the fuzz output. If I continue adding better

mutation algorithms to the current fuzz framework, it can further improve the

results;

4. The start and stop time of Excel process is too expensive. If there is a better

way for simulating Excel execute process, it will significantly reduce the

opening and closing time of the Excel process, and the fuzz speed can be

greatly improved;

5. The corpus distillation method in this presentation uses static code coverage

statistics. Compared with dynamic coverage statistics, this statistical method

has lower coverage accuracy. Only a rough coverage assessment can be

done, so there is room for improvement;

6. The initial seed set used by my fuzzer is limited. If all non-malware xls files on

VirusTotal can be used for corpus distillation, the coverage result will be better

and there will be more output

ACKNOWLEDGEMENTS

Special thanks to Jaanus Kaap’s blogs, the topics he shared at the POC2018 Conference,

his open source Vanapagan project and the XLS seed files he generously shared, all of

which helped me a lot.

Special thanks to @hackyzh, some of his fuzz ideas have inspired me a lot. □

 9998

HITBMag | June 2021

ABSTRACT

Number of users who use Live-Streaming services are

increasing currently. As a result, the volume of traffic

required to provide services is increasing exponentially,

which leads to economic and technical burdens. To

solve this, many platforms providing Live-Streaming

services are known to use grid computing to distribute

traffic to clients. Grid computing technology uses P2P

with unauthorized clients to send and receive data

rather than communicating with trusted servers. This

makes the process vulnerable at all time due to the

difficulty in verifying data and the fact that it is processed

locally. This paper analyzes widely used Live-Streaming

services employing grid computing and suggests attack

surfaces that can lead to vulnerabilities. Furthermore,

we demonstrate its risk by explaining vulnerabilities we

found (e.g., picture distortion, DoS, and data hijacking) on

the exact attack surface. Finally, we suggest a security

measure to these vulnerabilities.

CLIENT-SIDE ATTACK
ON LIVE-STREAMING
SERVICES USING GRID
COMPUTING
Suhwan Myeong
Taiho Kim
TaiSic Yun
Seungmin Yoon
Sunhong Hwang

 101100

HITBMag | June 2021

Table 1. Comparison Table of Live-streaming

services using grid computing

Unencrypted Packets

Most platforms do not encrypt packets (See

Table. 1). This cause security vulnerabilities

because attacker can arbitrarily tamper with

video data or data protocol headers and

transmit them to the receivers. In addition,

Unauthorized client can steal private video

data.

Receiver’s data processing issue

Grid-Executable of these services is used in

the process of sending and receiving video

data. Thus, if an attacker sends video data,

vulnerabilities such as memory corruption

inside the Grid-Executable can lead to

arbitrary code execution attacks.

Structure of Grid Computing

In Live-Streaming service, grid computing

technology is implemented in tree structure

or mesh structure.

Tree-based Structure

Grid computing technology of tree-based

structure is a method in which the user

receives video data from the parent node

and then forwards it to the child node. Data

is unilaterally transferred from the parent

node to the child node. (See Fig. 1)

At this time, if a malicious user on the

position of the parent node transfers

mutated data, all of the child node of that

receives mutated data. Moreover, it is easy

to modulate data and control flow because

it receives data from one user, which can

be efficiently acted on attacks.

Mesh-based Structure

Grid computing technology of mesh- based

structure is a method in which video data is

sent and received between different clients

connected to the same group. It is distinct

from tree-based structure with hierarchies

that unilaterally transmit data from one

side. (See Fig. 2)

Therefore, mesh-based structure can

reduce the risk derived from tree-based

structure.

However, there is still a possibility of attacks

on clients within the same group through

data modulation.

Fig 2. Mesh-based Grid Computing Structure

INTRODUCTION

Recently, due to the social distancing

caused by covid-19, groups such as

academies and companies are using a lot

of Live-Streaming services for non-face

-to-face events, classes, and meetings.

As a result, traffic for streaming services

is increasing rapidly, and because ISPs

(Internet Service Providers) have to pay

network usage costs in proportion to the

amount of network usage under Korean

law, streaming platform providers pay a lot

of money due to the increasing amount of

traffic. For this reason, most of streaming

platforms in Korea provide services using

grid computing technology to relieve

the economic burden. Grid computing

technology, which is a method of sharing

internal resources between users,

exchanges data between general users, so

if security management is not thoroughly

carried out, there is a possibility of being

vulnerable in security. Also, since it can

attack multiple PCs at once, its security is

important. However, there is no research

pointing out the security of the system

using the grid computing so far. Therefore,

in this paper, we will deal with the security

risks of grid-based streaming services

among Live-Streaming services.

BACKGROUND

Live-Streaming Service

Live-Streaming service is generally

called video sharing platform, and in the

early days of their appearance, anyone

who want to use streaming service can

transmitted private contents through video

sharing platform, but these days, public

broadcasting, politicians, entertainers, etc.

are also using those platforms a lot.

Grid Computing

Grid Computing is a type of distributed

and parallel computing, a technology

that allows multiple users’ computers

connect to a network to be used like

a single supercomputer. Using this

technology, some Live-Streaming services

in South Korea use distributed computing

technology that utilizes each client’s PC as

a server resource.

Grid-Executable

Grid Computing requires an executable file

that sends, receives, and processes data

with other clients or servers in addition to

browser to watch broadcasts. In this paper,

Grid-Executable is an executable file for

Live-Streaming service.

Grid Computing and Live-Streaming

Service

Live-Streaming services select data

transmitters and transmit video data.

Selected transmitters send video data to

another client. The service is provided by

sending and receiving video data from

the Grid-Executable and passing it to the

browser and application to send the video.

This way of Grid Computing communication

is used on Live-Streaming service in South

Korea and some corporations of China.

THE RISKS OF GRID COMPUTING

Its communication speed is important

because the Live-Streaming Service

broadcasts in real time for ensuring this

speed, it omits the authentication or

encryption of complex processes and

focuses only on optimal data processing

functions. This paper aims to present attack

surfaces in those services.

Fig 1. Tree-based Grid Computing Structure

 103102

HITBMag | June 2021

ATTACK SURFACE

As a result of the initial analysis, all three Live-Streaming services each have three binary

files include Grid-Executable on the client side. These files are as shown in Fig. 3 and

operate like following structure. Manager.exe is in charge of starting and managing the

overall process. When clients start watching a Live-Streaming, Manager.exe executes

Updater.exe. Then, it checks the version of other binary files and then performs an update

process if necessary (if newest version is). After that, Updater.exe executes the Streamer.

exe so that it is ready to send/receive video data.

The detailed operation of Streamer.exe is shown in Fig. 3.

First, the client transmits CPU speed, RAM availability, and network traffic to the main

server, and the main server transmits the IP and port number of another client to connect.

The client transmits and receives video data through socket communication through the

corresponding IP and port number. Although grid computing protocols are different for

each of the three companies, it generally proceeds in three steps as follows:

1. Prove that the client is an authorized user by sending initial data.

2. Send a short request packet.

3. Transmit the corresponding video data. In the above structure, as shown in

Fig. 4, five attack surfaces (Main Server, Update Server, Init data, Request data,

Video data) were selected to diagnose the vulnerability.

Fig 3. Process Flow

VULNERABILITY CONSEQUENCES

The result of vulnerability diagnose is shown in Table 2. In this section, we explain the

details of these vulnerabilities.

Table 2. Summary of vulnerabilities in Live- Streaming services

(O: discovered, X : Un- discovered, - : Not Applicable)

Fig 4. Attack Surfaces

 105104

HITBMag | June 2021

Network communication with the main

server

Private IP Exposure

This vulnerability is information leak on

Company C. Main server sends client’s

public IP and private IP. Private IP is not

necessary for client connection. And it

is possible to identify people who are

watching the same broadcast through

public and private IP, so it can be private

information leak. In fact, we could get a

total of 70 IP information in 2 hours from a

broadcast with about 2000 viewers.

Network communication with the update

server

Remote code execution as root via

update file tampering

In the case of Company A, there are no

verification routine before file execution as

seen, so we can tamper the update file by

DNS spoofing and remote code execution

at root privilege.

Prevented by Digital Signature Check

In Company C, we can tamper the update

file to older version of it, because previous

version file is also using valid file signature.

If there are some vulnerabilities in older

version file, this vulnerability will be useful.

Network communication with the Client:

Initial data

Video Stealing with Initial Data

In the case of Company A, the initial data is

sent after P2P connection at usual case and

the video data is received. In this process,

we noted that there is no authentication

process that can specify users other than

the initial data. We found vulnerability that

allow an attacker who is not participating

in that channel to send initial data to the

client in that channel, forcing the data to

be hijacked.

This is meaningful in that unauthorized data

such as private broadcasts, broadcasts

for adults, and paid lecture broadcasts

that are not disclosed to people can also

be captured. It can also lead to personal

information leakage in that it can collect

certain people’s Watch History.

Heap Based Buffer Overflow due to

Data Length Modulation of Initial Data

In the Company B, we could find Heap

Overflow due to data length modulation.

The response data for the initial data

included the data length value. If the

attacker receives the initial data from the

victim and modulates the length value

when responding, there is no routine for

checking the length value, so it is entered

as an argument of the memmov() function,

and the Heap Buffer Overflow occurs.

Video Stealing with Initial Data

There is a same vulnerability on Company

A. In the case of Company B, data needs to

be sent three times to be authenticated and

data stolen. It initially transmits the channel

ID given to the broadcast channel. It then

receives the first sequence and the last

sequence from the receiving client. If we

send the sequence in between, we could

receive the video data from that sequence.

Denial of Service

In the case of Company C, the ticket

information is transmitted to check the

client is normal user for service at the

beginning of the connection. At this time,

when the length header of the ticket is

tampered, it is larger than the length defined in the ticket-related structure and proceeds

to a different branch statement. Afterwards, that process was terminated with an error

message, which allowed a Denial of Service attack.

Network Communication with the Client: Request Data

Denial of Service

In Company C, when client receives request packet, Streamer.exe parses the packet.

First of all, it parses the 1-byte data which is the number of requests. Usually, the value

of this field is one. Then it parses these 4-byte data which is video sequence number.

However, if we alter the Request number field, it overreads the packet and the process

terminate with the error message.

Network Communication with the Client: Video Data

Heap Based Buffer Overflow

In Company A, as a result of protocol analysis, there is a 16-byte header containing the

data length in all video data. At this time, if the length value is altered and transmitted to

clients, there is no routine for checking the length value, and a heap overflow occurs in

the memcpy() function. This vulnerability occurs in both Mac, Windows, and iOS.

Pirate Broadcasting by modulation of video data

In Company A, there was a vulnerability that could remotely change video of other clients.

It is caused by weak data integrity verification.

In usual case, client who want to watch Broadcast_A can watch it because other client

who is in higher hierarchy sends it (See Fig. 5).

Fig 5. Usual case watching broadcast

 107106

HITBMag | June 2021

By hooking the send() and recv() function with Frida, the attacker could drop all the

original video data and send the desired video data to change the video and sound of

other clients. Since the attacker can relay Broadcast_B, attacker can force the victim to

watch any video attacker wants (See Fig. 6).

Denial of Service

Grid-Executable of Company B processes the video data received from other clients

and sends it to the browser. When the dummy data with video data is sent, the receiving

client sends it to the browser after processing the data. In this case, the video is stopped

because there is a problem with the process of sending data to the browser.

Picture Distortion (1)

In Company B, attacker can distort the victim’s screen. Thus, we could know that does

not verify the integrity of the video data. Company B is using tree-based structure of grid

computing. So, we think it can be expanded to Pirate Broadcasting like Company A.

Memory corruption via Sequence Number field modulation

In Company B, based on analyzing data protocol and binary file, the sequence number is

assigned to the first 8 bytes except header 0x20 bytes in the data required for watching

video. When the sequence number is processed, the value of signed long long type is

used as an index through the % operation.

Some parts of the data can be tampered with by an attacker. Values used like indexes

can be negative. This allows the process to gain access to unauthorized memory. An

attacker could exploit this vulnerability to remotely terminate the victim’s process.

Fig 6. Pirate Broadcasting

This vulnerability is significant in that it is not difficult to carry out attacks and is capable

of continuous performance.

Picture Distortion (2)

In Company C, attacker can distort the victim’s screen. The screen can be tampered when

the video data is sent after hooking at the WSASend() function using Frida. So, we could

know that does not verify the integrity of the video data. But Company C only sends data

about the requested data in mesh-based structure, so it will be hard to expand to Pirate

Broadcasting.

CONCLUSION

In this paper, we studied the risk of Live-Streaming services using grid computing

technology.

As a result, it presents three risks.

1. Data tampering is possible because packets exchanged between users are

not encrypted.

2. The data received from the user is used as the input value of the Grid Executable

without verification.

3. In the case of a service that uses a tree-based grid computing method, it is

possible to simultaneously attack multiple users because the infection of one

user affects all of the users below it.

Based on these three risks, this study derives five attack surfaces. In addition, through

vulnerability verification, various vulnerabilities were derived, including personal

information leakage such as private IP exposure, and critical 0-day vulnerability such as

RCE through file alteration. This risk suggests that it can act like a network worm rather

than attacking only one user.

Therefore, when using grid computing such as Live-Streaming service, we present two

security measures.

1. In the process of establishing a connection between users, a step of verifying

whether the user is authenticated by the server should be added.

2. The checksum value of the received video data should be checked through a

request to the server. □

 109108

HITBMag | June 2021

How do red teams
attack Kubernetes in

the real world?

Zebin Zhou & Yue Xu

RISE OF THE
CLOUD NATIVE
CONTAINERS

With the rise of cloud computing

and cloud-native technologies,

when companies choose cloud

products from cloud computing

platforms, they will also tend to

build cloud-native applications

on top of the cloud-native

infrastructure. Fewer developers

are using VMs and VPSs directly

and choose the cloud products

and cloud services with

Kubernetes, Docker, Container,

and Serverless instead; at

the same time, the number

of attacks against containers,

Docker, Kubernetes is also

showing an upward trend. One

of the most obvious is that

more and more botnets are

also eyeing the battlefield of

container

and cloud-native. We have

made a statistic, the purchase of

cloud-native products by users

has clearly shown an upward

trend. Graboid, Cetus, H2Miner,

Ngrok, Doki, 8220 Mining

Group, T3llyz, BORG, and other

genealogical botnets are also

quickly focusing on cloud-native

applications, including but not

limited to deploying backdoors

in Dockerhub’s images, attacking

Docker Daemon Remote API,

Kubernetes APIServer insecure

API, Kubernetes Kubelet insecure

API, etc. More than above, the

BORG will even be carried out

lateral movement and persistent

backdoor in Kubernetes. The

security risks of Kubernetes

applications are becoming more

and more serious.

 111110

HITBMag | June 2021

PRACTICAL ATTACK TECHNIQUES

Everything starts with the shell of a container. You can get the shell of the container of

the PHP application through a vulnerability similar to PHPUnit Remote Code Execution

(CVE-2017-9841).

In the default Kubernetes container network, you can access more things: ports of other

POD containers, and ports of Kubernetes Services, ports of the current node and other

slave nodes, the services of the Master node, and the component services of Kubernetes.

In the past, our goals were often the Agent Master server, SSH password database or

IT automation master control server, and so on, including but not limited to SaltStack

Master, Ansible Master, etc. But in the Kubernetes network, this kind of centralized power

is unified into ApiServer. Obtains the Admin permission of the Apiserver or the ROOT

permission of the Master node will announce the end of the war.

After entering the private Kubernetes network, the red team needs to figure out where

they are, for example:

1. Which cluster is the current container in?

2. Which Namespace is the current container in?

3. Which node is the current container in?

The first two questions, if you understand the service DNS design in the Kubernetes

container network, will certainly not be difficult for you. Here are two simple examples of

Kubernetes Service DNS records.

What are the actual actions of DNS requests in a Kubernetes container? If you use

nslookup (in busybox image) to request a service name that does not exist in the current

Kubernetes namespace (assuming the default namespace: default).

For example, service_inexistence. nslookup will request in turn as below:

• service_inexistence.cluster.local

• service_inexistence.svc.cluster.local

• service_inexistence.svc.cluster.local

• service_inexistence.default .svc.
cluster.local

• service_inexistence.cluster.local

• service_inexistence.default .svc.

cluster.local

NEW CHALLENGE FOR RED TEAM

While the infrastructure used by enterprises

is going to change, the red team’s attack

skills and thinking must also be innovated.

Red teams generally divide the start-point

of persistence into two categories:

1. the persistence in the production

network

2. the persistence in the office

network

For traditional IDC, in general, the base of

the production network is to get a shell of

a server host, and then we will collect the

information on the host server, and use

host alive detection, port scanning, service

collection, and other methods to get more

shell to achieve the purpose of controlling

all servers or important and core servers.

And now, when enterprises build

applications on the cloud-native

Kubernetes, if the red team obtains the

shell of the production network through

application vulnerabilities, it is often not the

same as an IDC server, you will get a shell in

a container with a single environment and

limited local resources and information.

At this time, if the red team does not

understand the security design and

implementation of cloud-native technology

and container technology, it will be hard to

go to next.

On the other hand, the method of getting

an office network PC’s control is similar

to the traditional ATT&CK method, but the

red team’s lateral movement from PC to

production network will be very different.

In IDC, staff originally depended on PAM,

Jump Servers, and other devices that use

SSH capabilities to log in and manage the

server. but now, different applications are

running in different containers and use

Kubernetes for deployment, scaling, and

management.

The administrators, developers, and

operation and maintenance personnel of

production network applications do not

have server host permissions, but only

container permissions of their application.

Enterprises use multi-tenant container

clusters to assign employees’ permissions

to the cluster under the namespace of their

own application and provide kubeconfig

corresponding to the application,

namespace, and profile to the application

administrator; configure PodSecurityPolicy

to prevent the application administrator

break out the rules.

The administrator no longer uses ssh

for the operation, but through kubectl or

secondary development tools (usually, it

may be a dashboard with a web console).

Therefore, the target of the red team on

the PC will be changed to the configuration

file in the ~/.kube/ directory, instead of the

ssh login credentials and the credentials of

the jumper server; of course, with the rise

of DevOps technology, it will attack the

internal DevOps platform of the enterprise.

It is also a new type of attack technique

under sudden change.

 113112

HITBMag | June 2021

The reason is that Kubernetes will be mounted into the container with writing search

default.svc.cluster.local svc.cluster.local cluster.local in /etc/resolv.conf file to ensure that

the domain DNS resolution of the container can be addressed normally. Because of this,

you can get the namespace name and cluster domain easily. Then how does the red

team get the IP of the current node where the container is located?

This information is very important. On this point, you can check the container’s arp table

by cat /proc/net/arp. If you are lucky, you can easily get the IP and Mac address of the

NODE. Container escape is that the red team will inevitably try after getting a container’s

shell. To better understand the method of container escape, you should know that the

process in the container is essentially just a restricted ordinary Linux process. All the

behaviours of the process inside the container are transparent to the host.

Therefore, the nature of container escape is very different from hardware virtualization VM

escape (excluding Kata Containers, etc.). In my understanding, the process of container

escape is that a restricted process obtains unrestricted full permissions, or getting more

privileges for a process originally restricted by Cgroup/Namespace permissions, it is

closer to the privilege escalation in the Linux host.

The common escape techniques are as follows:

1. Docker Components Vulnerability

• Docker runc (CVE-2019-5736)

• Docker cp (CVE-2019-13139)

2. Linux Kernel Vulnerability

• DirtyCow (CVE-2016-5159)

3. Mounted File

• /docker.sock (docker daemon)

• /containerd.sock (containerd daemon)

• /proc, /etc, /root ...

• /var/run/secrets/kubernetes.io/serviceaccount/token

4. Shared Linux Namespace & Capabilities

• Privileged Containers

• Exploit shim(CVE-2020-15257) with net=host

• Process Injection with CAP_SYS_PTRACE AND HOSTPID

• Rewrite Cgroup with CAP_SYS_ADMIN

If the target is set to obtain read and write permissions for files on the host (everything

is a file on Linux), the idea of escape will be more flexible. There is an escape method

for Privileged containers and containers with CAP_SYS_ADMIN Capabilities, which is

similar to the method of executing commands on the host using cgroup release_agent,

but most EDRs can not detect.

The principle is that the red team creates a new cgroup of device subsystem in the

current container and rewrites the “devices.allow” file of cgroup in the current container

to “a”. At this time, we have access to the host’s block devices and can read and write

any file of the host. (Now, you can refer to https://github.com/cdk-team/CDK/blob/main/

pkg/exploit/rewrite_cgroup_devices.go for more information on this method.)

 115114

HITBMag | June 2021

But not all containers allow us to escape.

Focusing on the default design of

Kubernetes can also help the red teams

achieve more results in the Kubernetes,

especially the network. The following

image shows that in the default design

of Kubernetes, you can access things

differently from the traditional IDC private

networks after you get a shell.

The IP of POD and Service are allocated

based on the podSubnet and serviceSubnet

settings of the Kubernetes administrator.

We can scan the ports of containers based

on this information.

In terms of detection, although in the

traditional IDC intranet confrontation, a

large-scale port scan will easily trigger the

detection logic of EDR. Some EDRs do not

adapt to the tunnel or CNI plugins that come

with the container network, which makes

EDR unable to detect scanning behaviours

between containers to containers, and

containers to nodes.

For the red team, it is necessary to determine

whether the current container network is

using service meth. Because if istio is used

in the Kubernetes network, if you initiate

port scanning and detection from inside

the container, the scan results of all ports

will return open for masscan, and for the

commonly used Nmap scanning options

under normal circumstances, they will all

return “filtered”. So how to detect whether

the target cluster is using istio?

The easiest and most effective method

is that you can initiate a request to an

HTTP 80 service on the public network in

the container. For example, execute the

command as `curl -i http://httpbin.org/get`,

and istio will inject header contains envoy

and istio into this request. The header can

be easily seen.

About scanning, whether your container

shell is in istio or not, it is a good choice

to use the Nmap parameter like `-p 17 -iL

all_ip_in_Kubernetes.txt -sO -Pn` on the

intranet to perform ICMP scanning to

determine whether the container and the

host are alive. Of course, the premise is

You have to first think about whether the

use of tools and scanning behaviour will be

discovered by EDR.

In the port scan results, the following ports are often focused on by the red team: once

the kube-apiserver is not authenticated or the admin’s kubeconfig is obtained, it will be

a risk of harming the entire cluster.

Even if the obtained kubeconfig is not an admin, it is worthy of the red team’s attention. The

kubectl proxy subcommand and kubelet’s 10255 read-only-port are security issues that

are easily overlooked by cluster administrators under the default design of Kubernetes.

1. kube-apiserver: 6443, 8080

2. kubectl proxy: 8080, 8081

3. kubelet: 10250, 10255

4. dashboard: 30000

5. docker api: 2375

6. etcd: 2379, 2380

7. kubeflow-dashboard: 8080

In addition to the components used by Kubernetes by default as above, the open-source

components commonly used in container applications should also attract our attention.

For example: “API Gateway”. The most commonly used Cloud-Native API Gateway: Kong.

The version of the open-source branch does not include authentication capabilities. In

general, administrators will use a private network to ensure the security of the Kong

Admin API, so we can easily control it after entering the intranet. APISIXs with the second

market share, it’s Admin API is also open to the public world.

Although there is an access key-based authentication capability, it has a default access

key that is often not modified; with this access key, it can even be used directly. Run the

Lua script to get the shell of the API Gateway service container. The API gateway manages

the north-south traffic of the cloud-native cluster, which is very helpful in understanding

the role of the cluster.

REAL-WORLD RED TEAM ATTACK CASE

Okay, then we will share a real-world CASE in 2020, which involves a lot of cloud-native

and container-related knowledge. This time our goal is a company engaged in the

financial industry. All of their online applications and office applications are running on

Kubernetes. They hope to assess their overall security risk convergence results from the

public network to the private network. It is not aimed at employees, not using phishing,

but using vulnerabilities to obtain their cluster permissions without any interaction with

employees.

We found that they built a self-developed zero-trust system based on the concept of zero-

trust, so that employees can work normally at home and on their mobile phones. This is

our first breakthrough. After investigation, we found that all the intranet domains of the

target company are in the subdomain of innerxxxx.com, and some private domains can

also be parsed normally on the external network. They are all a cname record, pointing

to a gateway (ztgateway.innerxxx.com) in the public network.

 117116

HITBMag | June 2021

Just like below:

;; ANSWER SECTION:
git.innerxxx.com. 600 IN CNAME ztgateway.innerxxx.com.
dev.innerxxx.com. 600 IN CNAME ztgateway.innerxxx.com.
hr.innerxxx.com. 600 IN CNAME ztgateway.innerxxx.com.
www.innerxxx.com. 600 IN CNAME ztgateway.innerxxx.com.
bot.innerxxx.com. 600 IN CNAME ztgateway.innerxxx.com.

But if the red team directly accesses the intranet office domain name from the public

network, it will return 403, as shown below:

If an HTTP request from a target company

employee wants to access the OA website

normally, two things are required; one is

the client accessing the intranet, and the

other is the session token indicating the

employee’s identity in the request.

Regarding employee identity, we obtained

the AD Credential of some employees

through brute force cracking of Microsoft-

Server-ActiveSync exposed on the public

network but we were unable to obtain the

employee’s client program for a long time.

However, when we learned that the

client program played a similar part as a

VPN, we began to analyze the possible

security issues in this design. Imagine

that, ztgateway.innerxxx.co is open on

the public network. What is its method of

restricting the source of HTTP requests?

Will this type of restriction be converted

from inaccessibility at the network layer

to code implementation at the application

layer?

So, I tried to fuzz the HTTP request we sent

to ztgateway.innerxxx.co, and set CLIENT-

IP, X-FORWARDED-FOR, X-FORWARDED,

FORWARDED-FOR, FORWARDED,

REMOTE-ADDR, and other header values

to different private IP addresses. In the

end, I found that when the HTTP request

sent to the Zero Trust Gateway carries the

X-FORWARDED-FOR HTTP header and

the value is a private network IP starting

with 10. We then can access the OA login

page. Coupled with the employee identity

we got in Microsoft-Server-ActiveSync, we

successfully have access to the enterprise

automated office network.

The office network is a new world. After a

long period of exploration, we finally found

a new breakthrough in the serverless web

service (serverless.innerxxx.co). When

a new git project is provided to link to

serverless web services, serverless will

have a public container to download the

project code, install dependencies, and

repackage it. This is a very imaginative

feature for the red team. We found that

there are several ways to get the shell of

this container.

1. Command injection attack when git clone downloads code.

2. When installing node.js dependent packages, construct a special package.

json to control the public container using methods such as preinstall.

3. Configure the pip requirements.txt pointing to the malicious third-party

package, and use the malicious pip package to get a shell of the dependent

packaging container.

In addition, there are commands executed like git clone, git submodule update, go get

are executed by using programs such as git client and go client of low versions, such as

CVE-2018-6574, CVE-2019-19604, and so on. All in all, we got the root shell of this public

container and found that this container contains CAP_SYS_ADMIN capabilities. There

are two escape methods suitable for this type of container.

Now you can use our open-source tool CDK (https://github.com/cdk-team/CDK/) to easily

detect and escape such containers. Use cdk evaluate to detect capabilities and use cdk

run rewrite-cgroup- devices or cdk run mount-cgroup “<shell-cmd>” subcommand for

escape the container.

Now we have the node shell for the public container, great! We know that all agents

that act on and serve containers should run on the host or sidecar container,

 119118

HITBMag | June 2021

“DaemonSet” containers with privileged; we did find a lot of self-developed agents on

this host. So, we found one interesting agent named cri_webconsole_agent, and got

his binary program, startup parameters and configuration files. The program is written

in golang, and we know that this agent program is to support web console capabilities.

How do corporate employees manage their containers? It is through this web console

that you can call bash in the container to execute commands in the web console. The

agent will listen to port 3333. The following HTTP request can create a session of the

docker exec subcommand. In the end, the agent actually calls the local unix:///var/run/

docker.sock exec function.

But how should we get all the container IDs with 64 lengths on each server? This is

obviously impossible. But the man who has used the Docker container knows that we

can replace the entire container ID with 64 lengths by using the first few digits of the

container ID. In unix:///var/run/docker.sock, it is also supported. If there are only two

containers running on the host like below:

1. cd2cb750d3fadf31c18e04f09d168f89b53bbe39bc4488cda90f3632448e3cb8

status: Up 4 months

2. cdd085be4297dc2e89958af4be5427e853b008a10797eaab15197f944a2babb1

status: Exited (0) 2 days ago

The behavior of unix:///var/run/docker.sock will like below:

1. Request /v1.24/containers/cd/exec and return “container id multiple”;

2. Request /v1.24/containers/ca/exec and return “container id not found”;

3. Request /v1.24/containers/cdd/exec and return “container not starting”.

Therefore, we can use the Docker short-id feature to fuzz all container short-id on all

hosts. We can get the shells of all containers on all node servers, so, we focus on another

agent. It is an agent that collects logs. It runs on all Kubernetes node servers and uses

DaemonSet to deploy. It uses a Kubernetes DaemonSet YAML file similar to the following

image.

This is almost the default setting in filebeat-daemonset.yaml. Many escape tricks that may

work here. It is both privileged and mounts the root directory to the container. Obviously,

we only need to use the above cri_webconsole_agent 3333 port to control the container

started by this DaemonSet to obtain the ROOT permission of any node server, and this

DaemonSet ensures that all Kubernetes Nodes run a copy of a Pod, all nodes of this

cluster are in our grasp.

Obviously, if there is a tool that can help red teams do the above work, then our penetration

testing will progress more smoothly; this is also the reason why we developed CDK

(https://github.com/cdk-team/CDK); CDK-Zero Dependency Container Penetration

Toolkit, it is a CLI tool which allows you to:

1. Evaluate weakness in containers or Kubernetes pods.

2. Exploit multiple container vulnerabilities.

3. Perform common container post-exploitation actions.

4. Provide capability when host-based tools are not available in the container.

5. Perform the above in a manual or automated approach.

Hope the skills, experience, and tools we share can help you. □

 121120

HITBMag | June 2021

Bramwell Brizendine, Austin Babcock, and Andrew Kramer

TOWARDS A
PRACTICAL
APPROACH
TO JUMP-
ORIENTED
PROGRAMMING

Move over, ROP:

ABSTRACT
Jump-oriented Programming (JOP) is an advanced, little

studied form of code-reuse attacks, very different from

Return-oriented Programming (ROP). Little work has

been done with JOP apropos of practical, real-world

usage. In this paper, we introduce a methodology of

advanced manual techniques for performing JOP in a

modern Windows environment, including novel, manual

techniques to allow JOP to be more effective in real-

world usage. This research culminates in JOP moving

from the theoretical, to being more useful and relevant.

This work provides a refinement and expansion of

viable dispatcher gadgets, including a novel two-gadget

dispatcher form, helping provide much needed flexibility

to control flow mechanisms for JOP. We also provide a

novel contribution with the JOP ROCKET, which allows

for the automatic JOP chain construction, to produce

complete JOP chains to bypass DEP, utilizing an novel

variation on JOP, involving a series of stack pivots.

Keywords: Jump-oriented Programming, Return-oriented Programming, Code-

reuse Attacks, Software Exploitation, Reverse Engineering, Cyber Operations

 123122

HITBMag | June 2021

INTRODUCTION

Return-oriented Programming (ROP) has

been the predominant code-reuse attack,

since its formal introduction to the academic

literature in 2007 [1]. In fact, ROP has

become so omnipresent and ubiquitous,

that one might mistakenly think it is the only

code-reuse attack available. As we look

at exploits, we can find hundreds of ROP

examples at Exploit Database, yet there

are just a few [2–4] publicly available in the

wild that intermix a substantial amount of

JOP, and none that include complete JOP

chains.

We can categorize Jump-oriented

Programming as a state-of-the-art form of

code-reuse attacks, able to completely

abandon the usage of ret instructions, while

avoiding the use of the stack for control

flow purposes, although we do use it to

set up WinAPI functions. JOP is a seismic

shift to a very different style of code-reuse

attacks from ROP. While some varieties of

JOP can be intermixed with ROP, JOP also

stand on its own, fully separate from ROP.

There were even claims as recent as 2015

that JOP had never been done in the wild

[5], and since then it has only ever been

rarely done. In fact, there was no public

demonstration of a complete JOP chain

until our presentation at DEF CON 27 in

Las Vegas 2019, where we used only JOP

to bypass DEP. Since then, outside of JOP

exploits being written in an Advanced

Software Exploitation course taught by one

of the authors, we are not aware of other

complete JOP chains.

This research hopes to change that, as

we have made a number of significant

contributions since the release of the JOP

ROCKET [6–8] in 2019.

While JOP has been written about in

the academic literature for over a little

over a decade, it has languished, mostly

forgotten, with only some varieties of JOP

used to intermix with ROP. This is hardly

surprising, given the previous absence of

tools to facilitate JOP gadget discovery

and use, and the nearly complete lack

of documentation on practical details of

performing JOP.

The need for dedicated JOP tools led to the

JOP ROCKET , aa mature tool for discovery

and classification of JOP gadgets, allowing

users to find gadgets and construct a JOP

chain from scratch, assuming sufficient

gadgets. JOP ROCKET is also the first

utility to find dispatcher gadgets, which are

required to do an exploit entirely without

the use of ROP. With dispatcher gadgets

and JOP gadgets, we can entirely avoid

not only all ret instructions, but also the use

of the stack for control flow purposes.

In late 2020, we added support for

automatic JOP chain construction, to

create a complete JOP chain to bypass

DEP using VirtualProtect or VirtualAlloc.

The automated JOP chain involves a novel

JOP technique requiring fewer gadgets,

offering simpler usage. In April 2021, we

also extended the JOP ROCKET, introducing

a two-gadget dispatcher, allowing for a

single gadget that was relatively obscure

to be found more easily, and thus make

ability to use a complete JOP chain more

likely.

This paper’s organization will be as follows.

First, we will introduce JOP, providing a

background on this form of code-reuse

attacks, exploring the academic literature.

Next, we will introduce JOP ROCKET,

discussing the tool, its contributions,

and its general usage. Then we will

discuss ROCKET’s automatic JOP chain

construction and the novel approach

behind it. We will then present our novel

dispatcher gadgets, including a two-

gadget dispatcher. Previously, JOP using

the dispatcher paradigm was limited, owing

to scarcity of dispatcher gadgets. This

variation is significant because it allows

for vastly more possibilities. This novel

two-gadget dispatcher coupled with our

stack pivot variation on JOP should enable

JOP to be more feasible on many more

applications. Finally, we will take a deep

dive into manual techniques for JOP. Many

details on JOP usage in a modern Windows

environment had never before been

documented; some of these techniques we

have had to develop through trial and error

and experimentation, taking a theoretical

approach and making it pragmatic,

providing solutions to make JOP viable.

JUMP ORIENTED PROGRAMMING FUNDAMENTALS

JOP is a state-of-the-art form of code-reuse

attacks. Categorizing JOP may be useful

as a human construct, but we emphasize

these distinctions are arbitrary, as there

can be intermixing of the different styles.

The first method is the Bring Your Own

Pop Jump (BYOPJ) [9], where a register can

be loaded with an address, which is then

executed. T

he next method utilizes the dispatcher

gadget, allowing the attacker to craft

a dispatch table in memory and user a

dispatcher to execute individual functional

gadgets [10]. The third approach to JOP

[2–4] is a real-world variation on BYOP,

combining functional and dispatcher

gadgets as a more labyrinthine chain,

allowing for a greater variety of indirect

jumps and calls.

Bring Your Own Pop Jump Paradigm

The BYOPJ paradigm [9] allows much

flexibility, allowing one register to be

loaded with the address of another gadget,

e.g. pop eax; jmp eax, which can then be

executed. Thus, this allows for gadgets

to be chained together. Two options are

possible with this approach.

First, a ret could be loaded into the register,

and whenever EAX is called, e.g. jmp eax,

call eax, it functions as a ROP gadget,

causing a ret, using the stack in the normal

manner.

The other approach is the register could

point to another JOP gadget, allowing

them to be chained. In our example, rather

than pointing to a ret, EAX might point to a

JOP gadget, e.g. pop ebx; xor edx, edi; jmp

ebx. EBX in turn could point to yet another,

transitioning to another gadget. This

approach could prove more labyrinthine, as

the gadgets handle both control flow and

more purposeful operations, e.g. setting

up a WinAPI call. Neither of the BYOPJ

approaches are favored by this research,

although they are useful in extending the

ROP attack surface.

Dispatcher Gadget Paradigm

The dispatcher gadget paradigm [10] is the

approach this research favors. A dispatch

table, containing addresses of functional

 125124

HITBMag | June 2021

gadgets, is create anywhere in memory. Functional gadgets can be viewed as being

similar to ROP gadgets, used to deal with mitigations or set up WinAPI calls. The

dispatcher is a special gadget that orchestrates control flow. It can advance forwards

or backwards in a predictable fashion; it then dereferences and executes functional

gadgets. An exploit writer can place functional gadgets inside the dispatch table. After

each functional gadget, the dispatcher is called again, advancing to the next functional

gadget until the JOP chain is complete, as seen in the diagram.

While some make the distinction between JOP and call-oriented programming (COP)[11],

they actually are one in the same. The primary difference is indirect calls push the address

of the next instruction onto the stack. This could interfere with WinAPI arguments being

set up. However, this can be compensated for with a small stack pivot, such as a pop or

add esp, 4, restoring the stack to what it was. Thus, by intermixing indirect jumps and

calls, we can significantly enrich the JOP attack surface. To distinguish between them

seems unnecessarily pedantic, not reflective of real-world usage.

Though not used for control flow, the stack still plays a critical role, as it holds arguments

for WinAPI calls; it also may hold values for pop instructions. For exploit writers first

encountering JOP, it should be emphasized the dispatch table is separate from and not

intermixed with stack values; both form separate parts of the payload, and they may

even be in separate parts of memory.

JOP ROCKET

The JOP ROCKET [6–8] is a mature tool dedicated to discovery and classification of

JOP gadgets, with many features to aid an exploit author in being successful with JOP.

Not only was there previously no documentation on practical details of doing JOP in

a modern Windows environment, but there were no dedicated tools to discover JOP.

Tools such as such as Mona [12], ROPgadget [13], and Ropper [14] were dedicated to

ROP, but provided only highly minimal, if any, placeholder support for JOP. Without a

Figure 1. Control flow in JOP is established via a dispatch table and dispatcher gadget, allowing for

functional gadgets to be executed one after the other.

dedicated tool, it would have been a monumental effort to find sufficient gadgets for an

approach of pure JOP.

Firstly, the JOP gadget discovery algorithm is significantly more complex than its ROP

counterpart. The algorithm to discover ROP gadgets is simple: find a C3 opcode for ret;

disassemble backwards to discover all useful gadgets. This includes finding unintended

instructions through what is known as opcode splitting.

Thus, from push 0xc354ba55, if we were to start execution in the middle of the instruction,

we could produce the unintended instruction of push esp; ret, as shown in the figure. Such

opcode splitting expands the attack surface significantly. With JOP, there are dozens of

opcodes to search for.

The attack surface for JOP can be vastly expanded by enumerating these unintended

instructions. Searching for ROP in a manual process could be very tedious, and one

could do this in a debugger or disassembler. However, with JOP, because there are

numerous opcodes to search for, this takes more time and effort.

Moreover, once gadgets were found, they would need to be separated by registers, as

some are reserved for dispatch table and the dispatcher. The most important gadgets

are dispatchers; finding these will dictate the choices of what is to come. With scores of

impractical, repetitious gadgets, finding a dispatcher would be non-trivial. Thus, we were

faced with a research problem of there being no dedicated tools supporting JOP gadget

discovery and classification [5, 9, 10, 15, 16]. Without solving this and related problems,

JOP would likely be impractical except for the most highly dedicated exploit authors.

ROP without a dedicated toolset would be laborious, yet the available tools tremendously

simplify it, and what might otherwise be inaccessible, has long since become simple. In

that same vein, JOP ROCKET provides a highly efficient solution to this research problem,

taking what would require many man hours of labor and reducing it a task that could be

completed in as little as a minute.

Design of JOP ROCKET

We use design science methodology [17] to create in an artifact that is an instantiation of all

the many JOP methods that the tool encompasses; this artifact is JOP ROCKET itself. The

result is an object-oriented, highly modular Python program, comprised of over 30,000

lines of code, with hundreds of data structures and numerous functions. ROCKET provides

a suite of utilities related to JOP gadget discovery and classification, allowing users to

Figure 2. Opcode splitting is used with code-reuse attacks to find useful, unintended instructions.

 127126

HITBMag | June 2021

construct JOP manually,

and it also automates JOP

chain construction, utilizing

a series of stack pivots to

bounce from one location to

the next, and then making a

dereferenced WinAPI call

with the stack parameters

already in place.

JOP ROCKET makes several

contributions. First, it uses

a refinement of the JOP

gadget discovery algorithm

to search for and discover

all possible opcodes for

indirect jumps and calls that

could be used for JOP.

Second, while finding these

gadgets, it simultaneously

classifies gadgets into over

a hundred categories, based

on operation performed

and registers affected; this

also includes dispatcher

gadgets, which we discuss

in a separate section.

Finally, as we discuss in

its own section, ROCKET

supports automatic JOP

chain construction, allowing

for complete JOP chains to

be built to bypass DEP.

JOP Gadget Discovery

and Classification

With JOP, the process of

gadget discovery is more

nuanced, as the JOP

ROCKET searches for 49

unique opcodes, including

ones for indirect calls and

jumps, e.g. jmp eax, and

there are dereferenced,

indirect jumps and calls,

e.g. jmp dword ptr [eax],

as well as dereferenced,

indirect jumps to a register

and an offset, e.g. jmp

dword ptr [eax+0x201]. It is

the opcodes that must be

searched for, rather than

the Assembly mnemonics

that might be intended

instructions.

Each of these 49 opcodes

begins with FF, an

commonly used opcode,

allowing for unintended

instructions to be found.

ROCKET will first search for

FF and if found it will search

for the remaining opcodes

that correspond to specific

types of indirect jumps and

calls; searching for one

opcode and then those

remaining allows for a very

substantial performance

enhancement, particularly

with larger binaries.

Once opcodes are

found, JOP ROCKET will

immediately find all possible

gadgets that can be derived

from it, by generating small

chunks of disassembly, from

2 to 20 bytes, created by

disassembling backwards.

By iterating through each

chunk, we ensure all

unintended instructions

are found. ROCKET will

only save unique gadgets.

ROCKET’s algorithm to

discover JOP gadgets is

a novel refinement of the

original algorithm [10],

ensuring all JOP gadgets

are found. As the code

is lengthy and complex,

we refer the reader to the

GitHub [8].

Once an indirect jump

or call is found, ROCKET

simultaneously performs

classifications of the gadget

into myriad categories,

based on the operation used

and the register affected,

with over a hundred

classifications possible.

All gadgets are classified

immediately after being

found, before searching

for the next opcode.

Having gadgets classified

into broad categories like

mov and subcategories

like the registered affects

lets users easily retrieve

specific gadgets sought.

The algorithm saves each

register at the address of

the target operation.

While expanding the attack

surface with unintended

instructions is critical for

any code-reuse attack

tool, lead to some highly

impractical gadgets. Thus,

JOP ROCKET employs

filtering to eliminate most

impractical gadgets. For

instance, mov dword ptr

[edi + esi], 34; ret; jmp ebx

would not be useful; it

would be quietly discarded.

Once gadgets are found

and classified, they are

simultaneously saved into

hundreds of data structures.

Only minimal bookkeeping

data is saved with no actual

opcodes or text preserved.

This bookkeeping data

allows for gadgets to be

called upon and generated

on the fly.

A user can select the

types of gadgets they are

interested, and output will be

produced, according to their

specifications, in seconds.

For some functions, limited

emulation is performed

on gadgets, to discover

stack pivot amounts.Once

a user selects desired

output on the print menu,

their selections are used

to generate the output on

the fly, saved as text files.

This is done by using the

minimal bookkeeping data

to carve out small chunks

of opcodes, which are

each sent to Capstone and

disassembled, and this is

used by JOP ROCKET to

generate the gadgets.

The user has a lot of flexibility

to select only operations

of interest to them. For

instance, perhaps they only

want to see gadgets that

mov a value into EDI; that

specificity is allowed.

NOVEL VARIATION OF JOP USING MULTIPLE
STACK PIVOTS

Previously it had seemed that to create a JOP chain

through automation would be impossible, owing to JOP’s

much greater complexity with control flow, with dispatch

table, dispatcher gadgets, functional gadgets, and the

restrictive use of registers. The dispatch registers must be

preserved to point to the dispatcher and dispatch table.

With ROP, the technique that Mona uses to set up a ROP

chain is pushad, populating registers with parameter

values for VirtualProtect and VirtualAlloc. After pushad,

then the stack would be set up, and then a pointer to the

WinAPI function could be dereferenced and jumped to,

allowing DEP to be bypassed. In the case of VirtualProtect,

memory could be changed to RWX, allowing for shellcode

to be executed, and with VirtualAlloc, memory could be

allocated with RWX permissions. Yet, with JOP there is no

similar gadget like pushad to easily facilitate automation.

With JOP, it seemed that just a manual process of

painstakingly pushing stack values or otherwise manually

setting up each WinAPI parameter in the correct would be

the only approach. However, an alternative method is to

use a series of stack pivots. That is, we could simply push

all the WinAPI arguments, return address, and function

pointer onto the stack in the correct order as part of the

ipayload. Then, a series of stack pivots could be used to

reach these arguments.

While this approach is not always reliable, it can work

if EIP is at a predictable distance from the desired stack

values after the vulnerability is triggered. For instance, if

the WinAPI arguments are found to be 0x3000 bytes from

where ESP is located after the vulnerability is triggered,

then a stack pivot could be sought that is at least 0x3000

bytes from it, using one or more stack pivots. We can

precisely calculate the distance, and if this is not possible,

we can come as close as we can and use JOP nops at the

start of the dispatch table.

One requirement for the automated generation of a code-

reuse attack chain is following some preset recipe. With

ROP, it is simple to use pushad as the cornerstone of the

 129128

HITBMag | June 2021

recipe. Rules can govern how specific inputs

could be crafted to populate each register,

based on available gadgets. The focus is in

providing a certain predetermined order of

values that could be used as arguments to

WinAPI functions.

With Mona, there is much subtlety and

nuance, providing a variety of ways to obtain

the desired register values. With ROCKET,

using a series of stack pivots to reach the

WinAPI arguments is a simple approach

for automating JOP chain generation. This

method also allows for a JOP chain to be

achieved in a relatively small number of

gadgets, whereas manually crafting each

parameter value would take far more

gadgets.

The approach to JOP with multiple stack

pivots is depicted in the figure. Two stack

pivots are used to add 0x700 to ESP,

while another adds 0x500, and another,

0x20. The total pivot is 0x1320. If the stack

values were 0x1315 bytes away, the pivots

would take us within 0xB bytes of that

location. With padding and pivots, it could

be possible to precisely reach the payload,

while JOP nops could also be used in the

beginning of the dispatch table if not quite

precise.

The next gadget following the stack pivots

is pop eax, which is used to move a pointer

to VirtualProtect into EAX. That is then

dereferenced with a jmp dword ptr [eax]¸

thereby beginning the call to VirtualProtect,

with all the needed arguments and the

return address on the stack.

The ideal setup for this is when the payload

is within a fixed, predictable distance that

can be determined programmatically, e.g.

X bytes from a particular part the binary at

a specific point during the exploit. Placing

the dispatch table on the stack would be

simplest, but the heap could work.

Figure 3. Hypothetical JOP chain using a series of stack pivots to adjust esp to point to WinAPI

function arguments.

Automatic JOP Chain Generation to Bypass DEP

JOP ROCKET performs analysis of available

gadgets to determine how to create the

JOP chain. First, it uses two ROP gadgets

to set up JOP, and then a JOP gadget is

initiates the chain.

Beyond this, the chain is pure JOP, free

of rets. ROCKET then identifies pointers

to WinAPI functions that can be used to

help bypass DEP, such as VirtualAlloc

and VirtualProtect. If these are not found,

a place holder of 0xdeadc0de is found,

as it can be possible to extrapolate these

gadget addresses. This and appropriate

parameters are placed on the stack.

ROCKET identifies a dispatcher gadget,

adding padding to the dispatch table

between functional gadgets; the padding

is calculated based on distance moved.

If no dispatcher is found, this is left as

a placeholder. ROCKET then finds the

necessary stack pivots that falls within the

specified, acceptable range.

Finally, JOP ROCKET will find a pop to

load the WinAPI function address from the

stack, then making a dereferenced jump

to VirtualProtect or VirtualAlloc, to bypass

DEP.

ROCKET maintains continuity between

registers. To facilitate this, ROCKET identifies

the dispatch registers, including the register

being added to and dereferenced by the

dispatcher, pointing to the dispatch table,

and the register pointing to the dispatcher,

which each functional gadget ends in. For

purposes of simplicity, subsequent gadgets

avoid usage of the dispatch registers, and

all functional gadgets end in the same

register.

The art of exploit development is an

iterative process. Thus, for various obscure

reasons, some exploits may not work.

ROCKET helps with this process by creating

as many possible JOP chains as possible. It

does this from two standpoints.

First, it finds unique chains for functional

gadgets that end in every register except

ESP, regardless of dispatcher used,

providing multiple possibilities. Second,

ROCKET will create 5 different chains for

each register, using different stack pivots.

Thus, if one proved to be problematic for

some obscure reason, there would be

other choices available. For some binaries,

not all registers will support this stack pivot

approach, as available stack pivot gadgets

may be in conflict with dispatch registers.

ROCKET will populate different chains for

VirtualProtect and VirtualAlloc, to achieve

the target stack pivot range. The range

minimum is the actual distance from how

far ESP is when a vulnerability is triggered

to where the dispatch table is located. The

user may enter a minimum and maximum

for the acceptable range, so that the stack

pivot amount is appropriate to the exploit.

Although there is a default value, it is

recommended to enter the true range. After

all, if there is a large stack pivot gadget

and no smaller gadgets for a register, then

ROCKET might not display any results for

that register, due to lack of smaller pivots.

What is available with the attack surface is

most visible with an accurate stack pivot

range.

 131130

HITBMag | June 2021

Figure 4. Python exploit script containing a JOP chain to bypass DEP with VirtualProtect, generated by

JOP ROCKET.

With ROP, we intermix our ROP gadgets

and other values that might go on the

stack, via pop, etc. With JOP, the stack

values generated by ROCKET, including

the WinAPI arguments, the function pointer,

and the return address, are separate from

the dispatch table. Some stack values may

need to be customized by the user.

It is also possible some parameters may

need to be generated dynamically, such

as a return address, which is outside the

scope of what ROCKET does. It may not

always be possible input the stack values

directly, due to bad byte limitations.

If so, dummy values can be supplied;

those could later be overwritten. This

would require manual techniques such as

described elsewhere in this paper.

ROCKET produces a fully developed

Python script. Still, there is a requirement

for an initial vulnerability, which much be

triggered. Logic for the vulnerability will

need to be added to the Python script.

ROCKET’s JOP chain has two functions,

creating ROP and JOP functions, and it

also has a vp_stack, consisting of the stack

values. ROCKET also provides other typical

exploit essentials as placeholders.

Addresses with Bad Bytes Used for Stack Pivoting

Although ROCKET can generate a JOP chain that bypasses DEP, a manual approach may

be preferred in some situations, such as when function pointers or gadget addresses

contain bad bytes. To address this issue, techniques similar to those in the Gadget

Addresses Containing Bad Bytes section can be used.

First, encoded values for the relevant stack pivot addresses can be loaded into registers.

Afterwards, these encoded addresses can be modified via an instruction such as xor,

neg, or add, to load the stack pivot address into the register. Afterwards, a simple jmp

instruction can be used to execute the stack pivot containing bad bytes. Thus, we can

call a gadget despite there being bad bytes in its address.

The figure shown above displays an example of using two gadgets whose addresses

contain bad bytes to perform a stack pivot. The address of the gadget add esp, 0x40

is loaded into EAX using a neg instruction to avoid bad bytes. Although the first stack

pivot’s address has not been supplied in the payload, it can still be executed via the use

of jmp eax.

Once the first stack pivot completes, an xor edx, edi instruction is used to load the value

0x00131222 into EDX. Since this is the address of the second stack pivot, jmp edx allows

the gadget to be executed. Now a total pivot of 0x6b bytes has been performed. If this

were the desired pivot to the start of parameters, the WinAPI function could be called at

this point to bypass DEP.

NOVEL DISPATCHERS AND THE TWO-GADGET DISPATCHER

The single most important JOP gadget is the dispatcher, as it orchestrates control

flow for the exploit. The dispatcher predictably changes a value in a register, which

is dereferenced; the dispatcher itself is pointed to by a register. The ideal form of the

dispatcher is a very short gadget that only minimally modifies the dispatch table index,

as long as it changes at least 4 bytes, the size of a gadget address.

An ideal dispatcher gadget is short and predictably changes the dispatcher by a small

constant, e.g. add ebx, 0x6 ; jmp dword ptr [ebx] or sub edi, 0x8; jmp dword ptr [edi]. While

Figure 5. An example of the stack pivoting approach while avoiding bad bytes in some gadgets.

 133132

HITBMag | June 2021

ideal, these forms of the dispatcher can scarcer, so others that are less desirable may be

necessary. For instance, we could have add ebx, edi; jmp dword ptr [ebx]. This example

requires three registers being preserved, which tend to be restrictive. Expanding the

size of the dispatcher from 2 lines to a few may be necessary.

The danger in increasing the size of the dispatcher is in clobbering dispatch registers,

ruining the chain. Alternatively, registers used by functional gadgets could have their

usefulness reduced, e.g. add ebp, 0x08; add edx, 0x8; jmp dword ptr [ebp]. If EDX was

added to with every invocation of the dispatcher, this would need to be accounted for.

The figure shows an example of a dispatcher executing functional gadgets, with the

dispatch table shown in Immunity’s memory dump window. Functional gadget addresses

are listed in the dispatch table and are separated by four bytes of padding.

When the dispatcher executes, it increments EDI by eight bytes and jumps to the next

functional gadget found at that address. Each functional gadget ends in a jmp edx which

is loaded with the address of the dispatcher gadget.

Figure 6. The ideal form of the dispatcher gadget is to predictably modify the dispatch table.

Figure 7. Diagram from an exploit showing the flow of execution from dispatcher gadget to functional

gadget and back.

Finding suitable dispatcher gadgets previously was a significant hindrance to the exploit

development process. After all, without a viable dispatcher gadget the mechanics of

control flow will not work.

While the aforementioned gadgets are ideal, this research makes several novel

contributions in the form of dispatcher gadgets. Firstly, we extend the single-gadget form

of the dispatcher, introducing new instructions that can be used for this purpose.

Secondly, we introduce the two-gadget dispatcher, opening potentially vastly more

possibilities for dispatchers. These are important contributions, allowing pure JOP to

be possible where it otherwise might not be. The single gadget forms we introduce are

lea, which is more similar to add and sub. The others are single opcode gadgets that

predictably modify a register, advancing it forward by 4 or 8 bytes at a time.

This research makes a novel contribution with lea as a dispatcher. While lea instructions

are plentiful, the required form of lea is not, as we need to load the register and some

value into the same register, e.g. lea eax [eax + 0x28].

We introduce the novel dispatcher lodsd/lodsq. This moves a single dword from [ESI] to

EAX, and it adds 4 or 8 to ESI. Thus, after the each lodsq or lodsq, ESI would have been

increased by 4 or 8, and then ESI would be dereferenced, directly, e.g. lodsd; jmp dword

ptr[esi] or indirectly, e.g. lodsd; mov ebx, esi; jmp dword ptr [ebx]. One drawback is EAX

would be overwritten each time, limiting usage of that register.

In a similar vein, we introduce novel dispatchers cmpsd and movsd. One limitation for

cmpsd is it would be tied to memory addresses at ESI and EDI, limiting usage of those

registers, as they would need to point at valid memory. With each cmpsd, the memory

addresses pointed to by ESI and EDI would be incremented by 4 bytes, so ESI or EDI

could be dereferenced.

As with lodsd, this could be done in a single gadget, e.g. cmpsd; jmp dword ptr [esi] or

cmpsd; jmp dword ptr [edi], or across two gadgets, e.g. cmpsd; jmp ebx followed by jmp

dword ptr [esi] or jmp dword ptr [edi].

With cmpsd, it would be logical to have either ESI or EDI dereference the dispatch

table, while the other could point to either of the gadgets that comprise the two-gadget

Figure 8. Other variant dispatcher gadgets.

 135134

HITBMag | June 2021

dispatcher, if in use. This would guarantee each register points to valid memory and

ensure neither register is wasted. Movsd also increments by 4 bytes, while using both

ESI and EDI to point to memory.

With movsd, the contents of ESI are moved to EDI, so only ESI could point to the dispatch

table. With each invocation of the dispatcher, [EDI] would be overwritten, though it could

be used in functional gadgets with some planning.

This research has also made an important contribution by presenting a new two-gadget

dispatcher, making the requirements for finding a dispatcher less restrictive. Rather than

being reliant upon just one gadget, we expand possibilities with two gadgets chained

together. The first gadget can modify any register, regardless of what is subsequently

dereferenced, e.g. add edi, 0x20; jmp ebp. The second gadget performs the dereferencing

in just one line, e.g. jmp dword ptr [ebx].

ROCKET provides functionality to discover what we call empty jump dereferences; we

use the term empty because this form of the gadget may exist as only one line, as an

unintentional gadget. If expanded to two lines, it would transform into something else. By

searching for empty jump dereferences, ROCKET nearly always finds a jump dereference

for all registers, even when none are naturally occurring.

Thus, for all intents and purposes, the only requirement for this two-gadget dispatcher

is that the conditions of the first gadget be satisfied. The two-gadget dispatcher adds

the burden of preserving an additional third dispatch register. A larger binary with a rich

attack surface would prove more conducive to a two-gadget dispatcher.

The two-gadget dispatcher makes it possible to use call gadgets for dispatching. The

first gadget of the pair may end in a call, e.g. add ebx, 0x28; call esi. Because a call

instruction adds the address of the next instruction to the stack, cleaning up ESP is

necessary. Gadgets like add esp, 0x4; jmp dword ptr [ebx] or pop reg; jmp dword ptr

[ebx] would be effective.

Figure 9. Two-gadget dispatcher, utilizing a jmp in the dispatcher index gadget.

Figure 10. Two-gadget dispatcher, utilizing call in the dispatcher index gadget and a compensatory

pop in the dispatcher dereference gadget.

While usage of call can be compensated for, it comes at a cost, as now the register used

in the pop will always be overwritten with each invocation of the dispatcher. The register

still could be used within functional gadgets, but its value would not persist.

A similar dispatcher can be seen in the example above, showing an actual exploit using

a two-gadget dispatcher. Each functional gadget still returns execution to the first

dispatcher gadget, as usual. In this case, the EDX register is used to store the address of

the first dispatcher.

Afterwards, this dispatcher gadget increments the value of EDI, the dispatch table

register, and performs a call esi instruction. The call instruction pushes EIP onto the

stack. ESI contains the address of the second dispatcher gadget, which performs a pop

eax to restore the previous value of ESP. Finally, the next functional gadget is executed

via jmp dword ptr [edi].

Figure 11. Diagram showing the steps taken to get from one functional gadget to the next when using a

two-gadget dispatcher. Pop is used to reduce side effects from the first dispatcher’s call instruction.

 137136

HITBMag | June 2021

The lodsd or lodqd instructions present an interesting use case for two-gadget

dispatchers. Typically, there are intervening lines between lodsd and the control transfer,

making many lodsd gadgets unusable. Lodsd also requires that ESI point to accessible

memory; this must be the dispatch table. EAX is overwritten with lodsd, meaning if EAX

was used in functional gadgets, it would not persist. Similar to lodsd, cmpsd and movsd

present useful opportunities for the two-gadget dispatcher.

It is also possible to transition from one dispatcher to another, if the attack surface is

sufficiently limited to justify doing so. To do this, one need load the register holding the

dispatcher with the address of the new dispatcher. The dispatch table would need to

reflect changes in padding. By doing this, we could use of functional gadgets that would

have side effects that would make them otherwise unusable.

MANUAL TECHNIQUES FOR JOP

While JOP ROCKET automates construction

of a JOP chain to bypass DEP, there may

be times when an exploit author prefers to

use manual techniques to create the JOP.

While JOP was first written about in the

academic literature a decade ago, it was

very much theoretical, with many practical

details of usage absent.

To create complete JOP chains, it has been

necessary to explore and innovate some

of these techniques. Some of what follows

are new techniques we have developed

specifically for JOP, while others are

variations on what has been done already

with ROP.

Our goal is to provide useful techniques,

so that if an exploit writer wishes to use

JOP, there is available documentation. As

such, the focus is not in trying to distinguish

what may be our original contribution,

refinement, or extension, but simply just

to share the wealth of knowledge we have

developed.

Completing the Initial JOP Setup

After gaining control of execution via a

vulnerability like a buffer overflow or SEH

overwrite, the first step towards building a

JOP exploit is establishing control flow, so

that the dispatch table and dispatcher can

be reached. With JOP, all registers reserved

for addresses to dispatcher gadgets or

the dispatch table need to be loaded with

addresses first. The registers that are

Figure 12. Lodsd is a very practical instruction for a two gadget-dispatcher.

reserved depends on which dispatcher

gadget is being used and the available

set of functional gadgets. A traditional

dispatcher requires that two registers be

reserved, and a two-gadget dispatcher

necessitates that a third register be set

aside.

While the dispatcher gadget requires a

register be reserved for the dispatch table,

the register set aside for the dispatcher

gadget can be chosen freely based on

available functional gadgets.

For example, with the dispatcher gadget

sub esi, 0x8; jmp dword ptr [esi], the

dispatch table register must be ESI;

however, the dispatcher gadget register

could be chosen based on availability of

functional gadgets. If many useful gadgets

end in jmp eax, for example, it may be wise

to select EAX for this purpose.

If it is desirable to create an exploit that

exclusively uses JOP and no other code-

reuse techniques, it could be possible to

use a singular JOP gadget. However, this is

far from ideal in practice, given scarcity of

such gadgets.

Since the JOP control flow will not be

in effect until each necessary register

contains the appropriate value, this

technique is limited to the use of one JOP

setup gadget. This existence of this gadget

is far from guaranteed, as it will need to

satisfy several specific conditions, though

popad could be useful. It will need to load

values for needed registers and may need

to avoid bad bytes.

Because of these limitations, it is

recommended to use a short ROP chain to

set up control flow registers. ROP gadgets

are more plentiful than JOP gadgets, and

individual tasks can be given to specific

ROP gadgets, e.g. pop reg, rather than

needing one gadget to perform them all.

Once the control flow registers are set up,

a gadget such as jmp edx can be used to

return execution to the dispatcher gadget.

Using WinAPI Functions

As with ROP, a function call that bypasses

DEP can be done via JOP. The specific

gadgets and techniques used to perform

the call via JOP will look different due to its s

unique control flow and available gadgets.

The process of writing function parameters

to memory when using JOP is quite unlike

the typical ROP workflow.

In many ROP exploits, many registers will

be simultaneously loaded with function

parameter values, and the pushad

instruction will be used in order to write

them all to memory. The need for JOP to

reserve two or more dispatch registers

often eliminates the possibility of pushad.

For JOP, it is recommended to set aside

a section of memory to be used for the

function parameters. This location should

be writable and relatively close to the

region of memory used pointed to by ESP,

allowing for more convenient pivoting.

The stack pointer is used to determine which

values are parameters at the time of the

function call. With JOP, it may be possible to

supply some function parameters directly

in the payload. If parameters lack bad

bytes and do not need to be generated

programmatically via JOP, they can be put

into the payload with no issues.

 139138

HITBMag | June 2021

For other parameters that do contain bad bytes or otherwise cannot be included, we can

supply dummy values in their stead. These placeholders will be overwritten with the real

values via JOP. They serve as markers that will aid in the exploit development process.

The figure below shows values for VirtualProtect parameters included within a JOP

exploit payload. Since the lpAddress, lpfOldProtect, and return address parameters do

not require bad bytes, their final values are given directly. On the other hand, dwSize and

flNewProtect will need bad bytes, so these locations have been supplied with dummy

values that will later be overwritten.

Useful Functional Gadgets

JOP presents the opportunity to use many

specialized gadgets, each designed to

perform specific tasks. Many of these

novel JOP gadgets are often very different

than their ROP counterparts.

Stack Pivots

Since the JOP control flow is disconnected

from ESP, stack pivoting will often be used

during JOP exploits to move ESP to useful

positions. Stack-based instructions such as

pop and push will be extremely helpful if

not necessary during most JOP exploits,

since pop allows for custom values to be

loaded, and push can perform memory

overwrites or help transfer values from

register to register.

Pop instructions can also be used to stack

pivot. Since pop increments ESP by four

bytes, many pop gadgets can be chained

together to move ESP in the positive

direction. This pivot could be used after

loading a function parameter value to

relocate ESP to a higher address, where an

overwrite can be performed using a push

gadget. For example, a pop ebx; jmp ecx

gadget could be repeated three times to

perform a stack pivot of twelve bytes. Next,

a push eax; jmp ecx gadget could be used

to perform a push overwrite at the new

location.

Conversely, push instructions are much

less useful as stack pivots. While it is true

that they decrement ESP by four bytes, they

are much more difficult to use effectively,

as they will also overwrite the contents of

the address ESP lands at.

Figure 14 shows an example of this

occurring when push ebx; jmp ecx gadgets

are used to pivot ESP to a lower location in

memory. The stack diagram shows that

Figure 13. Initial and final values for each VirtualProtect parameter.

after execution, each address pivoted to via push ebx is overwritten. Because of this,

other types of instructions such as sub esp will be more suited for stack pivots in the

negative direction.

Powerful stack pivoting gadgets are those with operations such as mov esp, ebx or xor

esp, eax. While gadgets similar to these are rare, they allow for stack pivots to arbitrary

locations in memory as long as the other register can be controlled.

Additionally, gadgets such as xchg esp, ebx; jmp edi would be useful both for stack

pivoting as well as dynamic generation of values. Since these types of instructions are

not commonly created by most compilers, these gadgets may often be found via opcode

splitting.

Overwrite Gadgets

When constructing a WinAPI function

call, bad bytes are often an obstacle

to overcome. As such, dummy values

may need to be supplied for function

parameters, and several overwrites may

need to occur. Performing the task of

loading a function parameter into a register

while avoiding bad bytes, followed by a

subsequent overwrite will often be the

JOP chain’s main purpose. The availability

of JOP gadgets is often limited, so different

and unusual gadgets may need to be used,

to complete this task; however, some occur

more often or are more straightforward to

use than others.

PUSH

Push register instructions are relatively

common in compiler-generated code and

are only one opcode long. Because of

this, the chances that there exists a usable

gadget with this instruction are higher than

some other types of possible overwrite

gadgets. During normal x86 ISA, the

push instruction is generally used to add

to the stack with no consideration to that

memory’s previous value.

In JOP, it can be used to overwrite a value

within memory. If push is used this way, a

stack pivot will need allow ESP to reach

the location for the overwrite. Since push

decrements ESP by four bytes before

overwriting the value at the new address,

ESP will need to be pivoted to the address

four bytes above the desired location.

Additionally, another pivot will often be

needed, to move ESP where custom values

can be added via pop.

Figure 14. Diagram demonstrating the problems associated with push as a stack pivot instruction.

 141140

HITBMag | June 2021

When a push register gadget is used,

the register first needs to be loaded with

the appropriate value for the overwrite.

Whether the overwrite is used to avoid bad

bytes or to dynamically generate a value, a

short series of gadgets will likely be needed

to load the value. In the figure shown, a

push ecx gadget is used to overwrite a

dummy variable with 0x40.

First, the pop ecx; pop edx; jmp ebx gadget is used to pop the encoded value into

ECX and an XOR key into EDX. ECX is XORed with EDX to produce the result; then a

pivot occurs that relocates ESP to the location four bytes above the appropriate dummy

variable’s address. Next, push ecx; jmp ebx; overwrites the dummy variable with 0x40,

the real value.

A generalized approach can be defined when repetitively performing push overwrites

for each dummy variable. The stack must be laid out in a similar manner to that seen in

the figure. Each encoded parameter and its corresponding dummy variable are located

the same distance from each other.

For example, the distance between the first encoded parameter and dummy variable is

0xC bytes, which is the same as the distance between the second encoded parameter

and dummy variable. The encoded parameter should be loaded into a register via the

Figure 15. Small JOP chain showing a dummy

variable overwrite using the push instruction.

use of a gadget such as

pop eax; jmp edx. The pop

eax instruction will add four

bytes to the stack.

Next, the encoded

parameter can be decoded

via the use of an XOR

gadget or similar means. A

pivot can then be used to

move ESP four bytes above

the dummy variable to be

overwritten. In this example,

after pop eax; jmp edx a

pivot distance of 0xC bytes

will be needed to move ESP

to the correct location. A

push eax gadget then can

be used to overwrite the

dummy variable.

Lastly, a pivot to move

ESP eight bytes in the

negative direction can be

used to prepare for the

next encoded parameter

to be popped. Since the

distances between each

encoded parameter and

dummy variable are the

same, the same distances

for each pivot can be used

for each overwrite.

This series of gadgets

can be used indefinitely

for overwrites unless the

decoding process for

certain parameters requires

unique steps. The only

parts that must be changed

are the values supplied for

each pop gadget.

Figure 16. Example of a repeatable series of gadgets used to perform overwrites with the push

instruction.

MOV DWORD PTR

While push gadgets are relatively straightforward, they

require the use of stack pivots to ensure pushes can

be made to the correct location. Pop gadgets are often

available to stack pivot forwards; however, returning the

stack pointer to a location where values can be popped

for further overwrites may be more difficult.

While less commonly found, gadgets of the form mov

dword ptr[register], register can also perform overwrites

of dummy variables. These are simpler to use, with no

need pivoting. These gadgets will require the use of two

registers simultaneously: the register being dereferenced

should be loaded with the write address, and the second

register should be loaded with the value that will be written.

This need for multiple registers may become a concern in

JOP, since the two dispatch registers are already reserved.

This lowers the chances that a mov dword ptr gadget

will use registers that are available and not reserved for

control flow purposes. Side effects from other gadgets

that are needed to load register values also become

more problematic once additional registers need to be

preserved.

The JOP chain snippet above shows an example of an

overwrite performed using mov dword ptr [esi], edi. In this

example, the address being written to does not contain

any bad bytes, so the value can be popped directly into

ESI without any issues.

However, EDI will be used to store the parameter value

being written, which contains null bytes. The value

cannot be supplied directly in the payload, so the neg edi

Figure 17. Small JOP chain showing a dummy variable overwrite

using the mov dword ptr instruction.

 143142

HITBMag | June 2021

instruction is used to avoid bad bytes by acting on an encoded value loaded via pop edi.

Once the values are loaded, mov dword ptr [esi],edi will overwrite the address at ESI with

the contents of EDI.

The gadget containing neg edi also has an unwanted side effect that can be seen in

the xor ebx, ebx instruction. Each time this gadget executes, the contents of EBX will be

reverted to zero. As long as EBX is not a register important to the control flow of the JOP

chain, this gadget will work.

However, if the JOP chain used a dispatcher such as add ebx,4; jmp dword ptr [ebx], the

register containing the dispatch table’s address would be ruined upon its execution. In

the figure below, a two-gadget dispatcher is shown alongside the mov dword ptr gadget.

Between these two gadgets, few registers remain available. EAX, ECX, and EBP are

reserved as dispatch registers. ESI and EDI are used in the mov dword ptr gadget, and

ESP is the stack pointer. The only registers that can be freely used at this point are EBX

and EDX.

Avoiding Bad Bytes with JOP Gadgets

In many cases, values that must be loaded into registers will contain bytes that are not

able to be included within the payload. When this occurs, the value cannot be loaded

directly with a gadget such as pop eax; jmp edx and a corresponding value contained

within the payload. Values that may be needed that could have this issue include the

address of the dispatch table, the address of the dispatcher gadget, and specific values

that must be used for WinAPI function parameters.

Figure 18. With two-gadget dispatchers, available registers can be scarce while performing certain

tasks.

Figure 19. JOP Chain snippet showing the use of XOR to avoid bad bytes.

Figure 19 shows two XOR gadgets can be helpful in situations like this. First pop eax;

pop ebx is performed, followed by xor eax, ebx. To avoid a bad byte, the EBX register will

be used as an XOR key. This key can contain any value that does not include bad bytes.

Next, the desired value can be XORed with the XOR key. The result will be the value that

should be loaded into EAX. Once the second gadget executes and EAX is XORed with

the key, the resulting value of EAX will be the final value with bad bytes.

This type of sequence is useful as it allows for an arbitrary value to be reached with

flexibility as to the bytes used within the payload. Other versions of this sequence may

exist, where certain pop instructions may not exist that correspond to one of the registers

involved in the XOR operation, requiring additional setup.

If there is a pop eax gadget available, a gadget such as mov eax, 0x11111111; jmp ecx could

be used to ensure that 0x11111111 is loaded into EAX before an XOR operation. This way,

the desired value can still be reached by choosing the appropriate XOR key. The specific

value that is loaded into EAX with the mov instruction is not significant, as long as it can

be XORed to a useful value.

The downside to this method is that the XOR key cannot be chosen, and the encoded

final value may contain bad bytes. If this is the case, that particular XOR key will need to

be replaced or used to decode a different value.

table += struct.pack(‘<L’, 0x112212a6) #MOV ECX,0x0552A200 # MOV EBP,0x40204040 # JMP EDX
table += tablePad
table += struct.pack(‘<L’, 0x11221289) #POP EAX # JMP EDX
stackChain += struct.pack(‘<L’, 0x054a5e90) #xor’d to 0x0018fc90 - write addr for dwSize
table += tablePad
table += struct.pack(‘<L’, 0x1122141c) # XOR ECX,EAX # MOV EBX,ECX # JMP EDX
table += tablePad
table += struct.pack(‘<L’, 0x112212a6) # MOV ECX,0x0552A200 # MOV EBP,0x40204040 # JMP EDX
table += tablePad
table += struct.pack(‘<L’, 0x11221289) # POP EAX # JMP EDX
stackChain += struct.pack(‘<L’, 0x0552a050) # xor’d to 0x250 - dwsize value
table += tablePad
table += struct.pack(‘<L’, 0x112212b7) # XOR ECX,EAX # MOV EBP,ECX # JMP EDX
table += tablePad
table += struct.pack(‘<L’, 0x11221480)# MOV [EBX],ECX # JMP EDX # write dwSize param = 0x250

An excerpt of a JOP exploit shows the method of using two XORs to avoid bad bytes.

These are used to set up register values for a dummy variable overwrite via the instruction

mov dword ptr [ebx],ecx.

First, the mov ecx, 0x552a200 instruction loads an XOR key into ECX. Afterwards, the

encoded value for the overwrite address is popped into EAX. The value is decoded

using the gadget xor ecx, eax; mov ebx,ecx; jmp edx, which also moves this overwrite

address value into EBX. The first two gadgets are repeated again, in order to load the

XOR key and encoded parameter value for dwSize.

Figure 20. JOP chain snippet that avoids bad bytes while performing a mov dword ptr overwrite.

 145144

HITBMag | June 2021

Then xor ecx, eax; mov ebp,ecx; jmp edx

is used to decode the parameter value.

This gadget is slightly different from the

previous XOR gadget, as it loads EBP with

ECX’s value, leaving EBX intact. Now that

the overwrite address is contained within

EBX and the parameter value is in EBX, the

mov [ebx],ecx; jmp edx gadget performs

the overwrite.

There are several other ways to address

bad bytes with bitwise or mathematical

operations. A series of gadgets such as

pop eax; jmp esi followed by neg eax; jmp

edi gadget could be used to supply the

negated version of the problematic bytes,

rather than the raw value. The negated

value is first loaded into EAX via pop

eax. The two’s complement negation is

equivalent to adding 1 to a NOT operation.

If the desired final value is 0x40, the

correct value to pop into eax is 0xffffffc0,

since this value is equivalent to adding 1 to

the result of not 0x00000040. After neg

eax executes, EAX will contain the desired

value.

In other cases, add or sub could be used

in place of xor to achieve similar results.

Integer overflows or underflows also can

be used to obtain results that otherwise

seem impossible, such as adding two

larger numbers together to result in a

smaller value with null bytes. For example,

the figure above shows an add eax, 0x60

instruction being used to load a value

smaller than 0x60 into EAX. First, 0x60

should be subtracted from the desired

value using two’s complement to find the

value to load into EAX. After popping this

value into EAX, add eax, 0x60 triggers

an integer overflow that results in EAX

containing the desired value. There are

many additional methods available aside

from those discussed.

Gadget Addresses Containing Bad

Bytes

In some instances, traditional methods

of combatting bad bytes may prove

problematic, for various reasons. For

example, the useful gadget popad; jmp ecx

may be located at the address 0x00112233.

However, with some effort these gadgets

can still be utilized. Since it is not possible

to alter addresses within the payload to fix

the bad byte issue, additional gadgets will

need to be used to prepare the bad byte

gadget for use.

First techniques specified in the previous

section can be used to load the gadget’s

address into a register. Once the register is

loaded with the correct address, a simple

jmp register gadget can be used to transfer

execution to the gadget containing bad

bytes. Although the gadget will not be

included in the dispatch table or payload in

general, it will still be executed at this point

in the exploit.

The figure above shows part of a JOP

chain that can load the value into EAX. A

sub eax instruction is used to avoid bad

bytes. To determine the correct value to

Figure 21. Using an integer overflow to load a

small value with the ADD instruction.

Figure 22. JOP chain designed to execute a

gadget at 0x00112233.

load with the pop eax instruction, the 0x62110000 constant is added to the bad byte

gadget’s address. Once the sub eax, 0x62110000 loads the address into EAX, a jmp eax

instruction is used to execute the gadget containing bad bytes.

While this method requires additional effort, it also allows a new subset of gadgets to

be used. JOP gadgets are relatively scarce when compared to ROP gadgets, and JOP’s

nature may further restrict certain gadgets from being used.

As such, it is important to maximize possibilities as certain gadgets may be necessary

for an exploit to work and may not have alternatives. Since gadgets may come from

other modules that are loaded at different memory locations, situations may occur where

every gadget found within a certain module may be unusable without this technique.

Dereferencing Function Pointers

To perform a WinAPI function call, the JOP chain will need to jump to the address of the

function. However, since ASLR will likely be enabled for the DLL containing the function,

hardcoding a function address into the exploit is not viable.

Instead, a pointer to the relevant function address must be found within the binary.

Pointers to VirtualProtect and VirtualAlloc can be found within binaries by using JOP

ROCKET. Once the pointer is loaded into a register, it will need to be dereferenced to

transfer execution to the address of the function.

There are many possible gadgets available to achieve this goal. One simple method is

jmp dword ptr [eax], where the dereference and jump happens simultaneously. When

such a gadget is not available, a gadget such as mov ecx, dword ptr [eax]; jmp edi could

be used after loading EAX with the pointer. This places the function’s true address into

ECX, allowing a jmp ecx gadget to execute the function. Alternatively, the dereferenced

address could be pushed onto the stack with push ecx.

Next, a jmp dword ptr [esp] gadget could dereference ESP, jumping to the WinAPI function.

When using jmp dword ptr [esp] to jump to a function address, the address must be in

memory at the stack pointer’s location. Normally this address would contain the desired

return address when calling a function; however, this is not possible in this situation.

As a result of the return address parameter containing the function address, the function

will call itself again once it is done executing. At this point, all the original function

parameters will be popped off of the stack and ESP will be located at the next address.

An example of this situation

can be seen in the figure,

which shows the parameters

used for the first execution

of the function. After the

function completes and is

called again via its return

Figure 23. Parameters for VirtualProtect resulting from a jmp dword

ptr [esp] instruction being used to call the function.

 147146

HITBMag | June 2021

This may limit this technique’s

portability. If the exploit can detect

the operating system it is run on, it

may be possible to programmatically

choose the correct offset to use.

Dereferences with an Offset

Many useful gadgets contain dereferencing instructions. While instructions such as

jmp dword ptr [eax], mov dword ptr [eax], eax, and xor eax, dword ptr [eax] may all be

used for different purposes during JOP, they all still perform dereferences. In practice,

many instructions may perform dereferences that are based on hardcoded offsets from

registers instead of the raw register values. When these instructions are encountered,

they can often still be used without the use of any additional gadgets.

For example, in the figure above a mov dword ptr [esi + 0x80] instruction is being used to

perform a memory overwrite. In order to write to the correct address, the 0x80 value can

be subtracted from the desired address to find the value that should be loaded into ESI.

In some cases, inclusion of an offset may introduce the problem of bad bytes into a

section of a JOP chain. In Figure 28 the mov eax, dword ptr[eax + 0x4] instruction is

being used to dereference the address 0x11227004. In order to account for the offset,

the value 0x11227000 could be popped into EAX; however, this value ends in the byte

\x00, which is a bad byte in many exploits. Instead of using the modified value, the

original value 0x11227004 is popped into EAX. Next, the value is modified using several

dec eax gadgets to account for the offset.

address, the second set of parameters will begin at 0x0018fc9c. In some cases, such as

with VirtualProtect, it may be possible to set up a harmless second function call that uses

the correct return address; in this example we will simply have another VirtualProtect

call, serving no purpose.

By setting the return address used for the second function call, a final return address

can be specified even though the jmp dword ptr [esp] method did not allow for the

first function’s return address to be specified. Even if the second function call does not

perform any actions successfully, it will likely still jump to the return address at the end

of its execution.

Generating Addresses of Other Functions

Once dereferenced, a function’s address possibly can be used to locate the address of

another function contained within the same DLL. A tool such as IDA Disassembler can be

used to calculate the offset between the address of the function whose pointer can be

obtained. As shown in the figures below, the function address indicated by the pointer

should be inspected within a debugger to ensure the version of the function being used

is known.

Once the function name has been verified, its address can be found in IDA. From the

figure below, VirtualProtectStub’s address is 0x7dd7432f. This address can then be

used to calculate an offset to another function. For example, the virtual address of the

CreateProcessA function can be found within IDA. Afterwards, the distance between the

two functions can be calculated as -0x32bd bytes.

This information can be used within a JOP exploit to call a function lacking a pointer in the

image executable. After dereferencing the pointer, JOP can be used to add or subtract

the offset from the original function’s address to find the address of another function.

This technique will depend on operating system or specific release, as virtual addresses

of functions within DLLs may change, as additional functions may be added.

Figure 24. Dereferencing the function pointer in WinDbg and then inspecting the disassembly at the

function address.

Figure 25. The function’s virtual address can be found using IDA. With this knowledge, offsets to other

functions can be found.

Figure 26. Using WinDbg to verify that the offset leads to

the correct function.

Figure 27. This JOP chain snippet uses a mov dword ptr gadget that contains an offset.

Figure 28. This JOP chain snippet cannot supply the value needed for the dereferenced offset.

Instead, additional gadgets must be used to avoid bad bytes.

 149148

HITBMag | June 2021

JOP NOPS AND DISPATCH TABLES

In ROP exploits, the idea of a ROP NOP refers to a gadget consisting of nothing but the

ret instruction, which directs execution to the next ROP gadget without performing any

other actions. JOP exploits have an equivalent type of gadget, which are referred to as

JOP NOPs. These gadgets do nothing except pass execution back to the dispatcher

gadget.

A gadget such as jmp ebx could be considered a JOP NOP, as long as EBX contains the

address of the dispatcher gadget. These gadgets may find a use when the exact address

of the dispatch table is not known. When this situation occurs, many instances of a JOP

NOP gadget can be supplied around the predicted location, and the dispatch table can

be supplied at the end of this series of gadgets.

Then, the exploit can then guess the location of the dispatch table. If the guessed address

is located at the address of a JOP NOP, many will be executed until the dispatch table is

eventually reached. This technique is similar to NOP slides, which are commonly found

before shellcode.

The figure below shows an example of a JOP NOP slide being used. Although the address

of the dispatch table is guessed incorrectly, the series of JOP NOPs brings execution to

the dispatch table without error.

It should be taken into consideration that alignment can become an issue when utilizing

JOP NOPs. It is possible that the guessed dispatch table address could be misaligned

with the address to the JOP NOP, likely causing an access violation.

For example, if the JOP NOP address is 0x11223344 and the guessed dispatch table

address is misaligned by one byte, the dispatcher would attempt to execute at the

address 0x22334411. Because of this issue, there may only be a one in four chance of

guessing a correctly aligned value in some situations.

Additionally, when a dispatcher gadget requires padding between gadget addresses,

the JOP NOP slide could enter the dispatch table at a location other than the first gadget

address. It may be possible to alleviate this issue by using the address of the previous

Figure 29. A JOP NOP slide can be used when the exact address of the dispatch table is not known.

gadget as padding until the next gadget, as shown in the figure below. With this technique,

multiple dispatch table entry points could become valid.

Another approach that could be taken could be to use and esp to ensure the stack was

aligned on multiples of four, and to attempt to ensure that the dispatch table began at an

address that was a multiple of four.

Since the chance that this technique will work is not guaranteed, it may be necessary

for an exploit to run multiple times before a JOP NOP slide is successful, if addressing

stack alignment is either not feasible or proves ineffective. This technique still drastically

improves the probability an exploit with an unknown dispatch table address may work,

assuming an attacker can occupy an expanse of memory .

SHELLCODE-LESS JOP

This research makes a novel contribution by presenting shellcode-less JOP. This more

demanding approach can result in an effective JOP chain that avoids the need for certain

commonly used functions to bypass DEP,

e.g. VirtualAlloc and VirtualProtect. Instead,

the WinAPI functions that the shellcode

would have called could be called directly

by JOP.

Shellcode need not be the only delivery

method available for an attack. By chaining

together multiple function calls, malicious

actions can be performed without

bypassing DEP or executing shellcode.

This technique has been used with ROP

to create a new administrator user on a

machine without shellcode [18].

Since this technique will require many

function parameters, payload size

restrictions may become a concern, if bad

Figure 30. When the dispatcher gadget modifies its register by more than four bytes, specialized

padding may become useful. Here, entering the dispatch table at 0x0018fac8 or 0x0018facc gives the

same result.

Figure 31. Example payload for a shellcode-less

attack.

 151150

HITBMag | June 2021

bytes are an issue. It is recommended not

to use this technique, unless there is a large

amount of space available for the payload

or bad bytes are not an issue.

The method described in the 4.2 Addresses

with Bad Bytes Used for Stack Pivoting can

be used, although it is possible to do so in

a more manual way, pushing each value

onto the stack at a time.

WinAPI function calls can be executed in

succession via a few different techniques.

The most practical method to execute one

function after another will be to set up the

parameters for each function, specifying

each return address as the address of the

next function. Calling the first function will

cause each function to execute in order.

The general layout of this type of payload

can be seen in the payload figure.

First, a JOP chain will set up the parameters

for each function that is called. This step

may not be necessary if bad bytes are

not a concern, and no values need to be

programmatically generated via JOP.

The next step is a series of stack pivots to

the correct location for the first function.

Once the stack pivot moves ESP to the

correct location, the function can be called.

Each function will execute, performing its

designated task. Since each return address

specifies the address of the next function,

the end of the first function’s execution will

lead directly to the execution of the second

function, and so on. No JOP is necessary

to transfer execution from one function to

the next.

In other cases, it may be desirable to return

to JOP after each function completes.

This technique may be used when it is

not possible to set up the parameters for

each function at the same time, such as

if a parameter for one function depends

on a value that another function wrote to

memory.

Instead of specifying the next function

as the return address each time, it may

be possible to specify the address of the

dispatcher gadget instead. If registers for

the dispatch table and dispatcher gadget

are not preserved, it may be necessary

to utilize one or more setup gadgets via

ROP to load these values into the relevant

registers before giving execution back to

the dispatcher.

The functions that are utilized can vary

depending on the task and complexity of

the attack. Some functions require few

parameters, and some may require many;

the types of parameters supplied will also

vary. Although some WinAPI functions

require raw values for their parameters,

many will require pointers to strings or

specific structures.

It will be important to know the address

these items will be located at, as this address

must be given as a function parameter. The

payload needs to be built in such a way

that these may be easily found in memory

and called upon.

Again, the caveat is that if there are bad

characters, they may need to be addressed.

Given that strings and structures are merely

bytes in memory, we can extrapolate

and determine programmatically where

each is, allowing for pointers to strings or

structures to be called. Strings are often

straightforward to construct; however,

documentation for structures should be

examined to determine the correct format.

If a structure is formatted incorrectly, the

WinAPI call will likely fail.

FINAL REMARKS

While much has been written about ROP,

very little of actual practical value has been

written about JOP, as most of it is theoretical

and confined to the academic literature.

This research has worked to make JOP

both more feasible and accessible. To that

end, this has been achieved by developing

a powerful tool, dedicated to every aspect

of JOP.

We have made an extensive study of

the fundamental nature of JOP itself,

discovering and creating many techniques

for practical JOP usage, much of which has

never been previously documented.

In fact, with this research, we have gone

and extended what is even possible with

JOP, with JOP chain automation and by

greatly expanding what is possible with

the dispatcher gadget, with variant forms

of the dispatcher and by introducing the

two-gadget dispatcher.

It is possible to do a JOP exploit entirely

without the use of a single ret, assuming the

binary is of sufficient size and with suitable

gadgets. To be successful necessitates that

some form of the dispatcher can be found,

and while we have expanded what can be

acceptable as a dispatcher, there will be

times when there is no viable dispatcher.

In those cases, JOP can still be of immense

value to the exploit author, as JOP gadgets

can be used to expand the attack surface

for ROP, by allowing intermixing of JOP and

ROP.

This research in no way endeavors to

make a claim that JOP is superior to ROP

as a code-reuse attack; it is merely a more

unorthodox alternative, requiring additional

set up. The end result of this research is

that when JOP is possible, not only is there

a useful tool to address all aspects of JOP,

but equally importantly, there now exists

the practical knowledgebase to be able

to actually construct a JOP exploit, while

at the same time dealing with many of the

numerous obstacles that may arise during

exploitation.

Certainly, JOP will not always be viable with

every exploit, but when the appropriate

gadgets are there in place, JOP may be an

excellent alternative.

Our Contributions

This paper makes several important

contributions. First, we present JOP

ROCKET, the JOP gadget discovery and

classification tool. This research presents

a novel contribution for automatic

construction of a JOP chain to bypass

DEP. In addition, we present our novel

dispatchers, including the highly innovative

two-gadget dispatcher. This innovation

can greatly expand possible dispatcher

gadgets, whereas the single-gadget

dispatcher is limited due to scarcity.

Next, we introduced the concept of

shellcode-less JOP, an approach to JOP

where instead of trying to bypass DEP

to set up shellcode to be executed, we

directly call the same WinAPI for the same

functionality. Finally, this paper introduces

several innovative manual techniques for

the practical usage of JOP in a modern

Windows environment. □

 153152

HITBMag | June 2021

References

1. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). Proc. ACM Conf. Comput. Commun. Secur. 552–561 (2007).
https://doi.org/10.1145/1315245.1315313

2. Specter: Sony Playstation 4 (PS4) 5.05 - BPF Double Free Kernel Exploit Writeup,
https://www.exploit-db.com/exploits/45045

3. M00nbsd: CVE-2020-7460: FreeBSD Kernel Privilege Escalation, https://www.
zerodayinitiative.com/blog/2020/9/1/cve-2020-7460-freebsd-kernel-privilege-
escalation

4. m00nbsd: PoC/CVE-2020-7460/, https://github.com/thezdi/PoC/tree/master/CVE-
2020-7460

5. Chen, P., Xing, X., Mao, B., Xie, L., Shen, X., Yin, X.: Automatic construction of jump-
oriented programming shellcode (on the x86). In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. pp. 20–29
(2011)

6. Brizendine, B., Stroschein, J.: A JOP Gadget Discovery and Analysis Tool. S. D. Law
Rev. 65, (2020)

7. Brizendine, B.J.: Advanced Code-reuse Attacks : A Novel Framework for JOP, (2019)

8. Brizendine, B.: JOP ROCKET repository, https://github.com/Bw3ll/JOP_ROCKET/

9. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy, M.:
Return-oriented programming without returns. Proc. ACM Conf. Comput. Commun.
Secur. 559–572 (2010). https://doi.org/10.1145/1866307.1866370

10. Bletsch, T., Jiang, X., Freeh, V.W.: Proceedings of the 6th International Symposium on
Information, Computer and Communications Security, ASIACCS 2011. Proc. 6th Int.
Symp. Information, Comput. Commun. Secur. ASIACCS 2011. (2011)

11. Sadeghi, A., Niksefat, S., Rostamipour, M.: Pure-Call Oriented Programming (PCOP):
chaining the gadgets using call instructions. J. Comput. Virol. Hacking Tech. 14, 139–
156 (2018)

12. Van Eeckhoutte, P.: Corelan Repository for mona.py, https://github.com/corelan/mona

13. Salwan, J.: ROPgadget, https://github.com/JonathanSalwan/ROPgadget

14. Schirra, S.: Ropper, https://github.com/sashs/Ropper

15. Checkoway, S., Shacham, H.: Escape from return-oriented programming: Return-
oriented programming without returns (on the x86). Rep. CS2010-0954, US San
Diego. 1–18 (2010)

16. Fraser, O.L., Zincir-Heywood, N., Heywood, M., Jacobs, J.T.: Return-oriented
programme evolution with ROPER: a proof of concept. In: Proceedings of the Genetic

and Evolutionary Computation Conference Companion. pp. 1447–1454 (2017)

17. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Q. 75–105 (2004)

18. Cooke, B.: CloudMe 1.11.2 - Buffer Overflow ROP (DEP,ASLR), https://www.exploit-db.

com/exploits/48840

Aleksei Stennikov and Timur Yunusov

Vulnerabilities within
Ingenico Telium 2, Verifone VX, and
MX series Point of Sales terminals

POS
World

 155154

HITBMag | June 2021

Terms and their meanings

Sending of arbitrary packets

Enables attackers to send and modify data transfers between the PoS terminal and its

processing network. Attackers can forge and alter transactions in the transaction stream.

Furthermore, they can attack the acquiring bank via server-side vulnerabilities.

Cloning payment cards

Enables attackers to copy an individual’s credit card information. Duplicate data is written

to a new credit card, which an attacker can now run fraudulent transactions elsewhere

with their clone. This includes Track2 data, CVV2/CVC2 codes and PIN codes.

Cloning terminals

Attackers can make a functional clone of a PoS terminal and run fraudulent transactions

through it, all they would need is unattended access to the terminal. They infect the terminal,

and a copy is made of its configuration information. The terminal, itself, includes all of the

necessary information an attacker needs to clone it. The information is then placed on

an identical terminal, which is activated and ready to use. With full control of their clone,

attackers have a few possibilities of carrying out payment attacks in their own benefit.

Persistency of malware

Enables the attacker’s malware to survive even after the device reboots. When malware

is persistent, the implications are much more severe. When it’s not, the attackers need to

reinfect the device or the lifetime of the attack is extremely short.

Abstract
Over 2018 and 2019, we found serious vulnerabilities in the two biggest
Point of Sales (PoS) vendors: Verifone and Ingenico. The affected
devices are Verifone VX520, Verifone MX series, and the Ingenico
Telium 2 series PoS terminals. First, we were able to extract the
firmware from the devices. Then we were able to use manufacturer’s
default or hardcoded passwords to enter configuration “service
modes.” From there, we were able to exploit vulnerabilities within the
terminal’s applications to execute our own arbitrary code. With these
vulnerabilities, an attacker could alter payment transaction details, clone
payment cards, clone PoS terminals, and install persistent malware.

POS VULNERABILITIES

Ingenico Telium 2 Series Vulnerabilities

More information about Ingenico Telium 2 vulnerabilities is available here.

Verifone VX Series Vulnerabilities

The following vulnerabilities were discovered in Verifone’s VX series of PoS terminals.

Attaining “System mode” access for Verifone VX 520

Attackers can easily gain “System mode” access to the PoS terminal. The credentials are

within Verifone’s VX 520 Reference Guide.

The System mode allows the attacker to change

system values. Changing the *GO value is helpful as it’s

responsible for setting the application that loads after

reboot.

Undeclared shell.out mode access (CVE-2019-

14716)

Our research extracted and decrypted the PoS

terminal’s flash content. We discovered a T:SHELL.

OUT application that’s trusted and signed by Verifone.

This application enables the attacker to access the

terminal’s file system. Without authentication, the

attacker can gain control over the terminal’s process

management through the process that follows. On the

terminal, the attacker can run T:SHELL.OUT and specify

the terminal’s serial port. They gain control by attaching

a cable to the terminal’s RS232 serial port and using an

external device with a TTY Shell application.

Figure 1 depicts the default password as listed within the VX 520 Reference Guide.

Figure 2 depicts setting the *GO

value within the terminal’s interface.

https://www.paymentvillage.org/resources

 157156

HITBMag | June 2021

To run the application, the attacker needs to change settings to:
*GO=T:SHELL.OUT
*ARG=”/DEV/COM1”

Figure 3

depicts

all of the

available

commands

within the

SHELL.OUT

application.

Figure 4 depicts the terminal’s display while it’s within the SHELL.OUT mode.

Stack overflow in Verix OS core during run() execution (CVE-2019-14717)

Figure 5 depicts the sch_run_not_vsa() function. We threw a stack overflow while

executing the Run() function. We traced it back to the filename copy process of the

sch_run_not_vsa() function (address 0x4002509).

The attacker can overwrite variables beyond the pc[32] array and its return address.

Figure 6 (left) depicts the run() overflow indication on the terminal’s display.

The lower 5 bits of the CPSR (Current Program Status Register) is 0x13 which indicates

#define CPSR_M_SVC 0x13U. This indicates supervisor mode within the Verix Core

subsystem. Combined with the prior vulnerability, our attacker now has maximum

privileges on the system.

Figure 5 depicts the sch_run_not_vsa() function.

F
ig

u
re

 4

F
ig

u
re

 6

 159158

HITBMag | June 2021

Integrity control bypass (CVE-2019-14712)

Our researcher found it’s possible to bypass Verifone’s file integrity controls.

What are they? Verifone’s file integrity controls who is authorized to load application

files onto terminals. It verifies the file’s origin, sender’s identity, and integrity of the file’s

information. It uses digital signatures, cryptographic keys, and digital certificates.

The process is basically:

• Developer applies for a certificate from Verifone.

• The developer creates an app and signs it with their certificate and password.

• When loading the app on the terminal, the terminal compares its certificates against

the app’s signature.

• The app is marked “authenticated” and given permission to run on the terminal

when it passes these checks.

Let’s take a closer look of the process of deploying an app:

1. We create an application file named APP.out.

2. Using the application file, developer certificate, and developer password, the

VeriShield File Signing Tool creates a signature file (*.p7s).

3. Load the signature file (APP.p7s) and the original application file (APP.out) onto

the terminal.

4. The terminal OS searches for signature files. The operating system compares

its internal signatures against the values stored within the application file’s

calculated signature.

5. If these values match, the operating system marks that the application file is

approved to run on the terminal. The OS creates an .s1g file with signatures. This

file contains Hash-based Message Authentication Code (HMAC) from the keys

in One-Time-Programmable memory (OTP). The file has an “authenticated”

attribute.

6. When run() is called, the terminal checks that the file has this “authenticated”

attribute. Next, the HMAC function checks the result against the .s1g file content.

7. If all checks have been completed, file APP.OUT runs in memory.

Some attributes from DIR command and files in SHELL.OUT:

--gcr Authenticated signature file.

--gc- Uploaded, but not authenticated file.

-agc- Uploaded, and authenticated application file.

If the attacker has privileges to run code in core context, it’s possible to call the function

of the .s1g file generation against the arbitrary application. This bypasses the integrity

checks.

Figure 7 above depicts an arbitrary app running

on the terminal’s display.

Figure 8 on the right depicts the source code of

our application exploiting this vulnerability.

 161160

HITBMag | June 2021

VERIFONE VX AND MX SERIES VULNERABILITIES

Vulnerabilities, described below are the part of SBI boot loading process, which affects

both VX and MX series. Therefore, the severity is extremely high.

To fix them, the vendor would have to update the boot loader process. This update has

been issued by PCI in Nov 2020.

Undeclared access to the system via SBI loader (CVE-2019-14715)

The trusted loader allows for writing arbitrary code to memory during its SBI loader stage.

All an attacker needs is physical access to the terminal.

The SBI loader enables file execution on the system through use of the XDL protocol,

processing .SCR files, or using the command line.

Our terminal has SBI version 03_04. However, this vulnerability occurs in both earlier

and later versions of SBI. Experts have confirmed the issue in version 03_10. Further

details will be covered for the 03_08 version.

Figure 9 below depicts our SBI loader access.

In the case of an unsuccessful USB-flash load, the system tries to load files through the

XDL protocol with the RS-232 serial port. The ddl.exe utility supports this protocol and is

available from VerixOS SDK.

Figure 10 depicts the main() function (0x00189DD4 offset) of the SBI loader while Figure

11 depicts the doXDL() function (0x00189E6C offset) of the SBI loader.

The Download File command uses the vulnerable check_bootHeader() (0x00196022

offset) function.

On the other hand, Figure 12 depicts the XDL_Proto() function (0x001961D4 offset) of the

SBI loader.

Figure 10

Figure 9

 163162

HITBMag | June 2021

Data is interpreted by the Executable

module using the header format that

follows:

Figure 13 on the left depicts the SBI

loader file header structure.

If the loaded header file’s “signature”

field is equal to 0xA19BC38F and the

“type” field isn’t null (line 42), then the

“load_addr” field is processed at the

memory address of the loaded module

(line 44). The content of the “load_addr”

copies into memcpy().

That allows an attacker to write arbitrary

code to the device’s memory within the

SBI context. This enables executing the

attacker’s code, including overwriting

the SBI code itself.

Figure 11

Figure 12

Figure 14 on the right depicts the

check_bootHeader() function

(0x00196022 offset) of the SBI

loader.

 165164

HITBMag | June 2021

3. Modify the SBI loader to call the CLI terminal function. Figure 16 below depicts the SBI

header modifications.

 » Loader 03_04 0x00000650 with offset (0x00189E48 offset on the terminal memory)
has bytes 03 F0 21 FE. This is the opcode of the PROMPT() function.

4. Load the file via ddl.exe. Figure 17 below depicts using ddl.exe during the SBI

load function to use an attacker’s arbitrary code.

Exploitation example

1. Get the SBI loader example. Figure 15 below depicts modification of the SBI

loader.

2. Modify the loader:

 » 0x00000000 offset – signature

 » 0x00000010 offset – type

 » 0x00000018 offset – load_addr

 167166

HITBMag | June 2021

Figure 18 above depicts the CLI terminal called through the modified SBI loader.

Figure 19 below depicts our access to the terminal’s NAND-flash memory.

 169168

HITBMag | June 2021

ATTACKS

In our research, PoS terminals became an instrument to simulate attacks for the banks

and service providers. They asked us to address their individual interests. They wondered

about the practical application of our assessments, including:

1. How easy is it to steal card details?

2. Can we make a functional clone of the PoS terminals?

3. Can someone send malicious requests to the authorization hosts and “steal

money” from the bank in some way?

Let’s take a look at each of these scenarios in greater depth in the sections that follow.

Card harvesting

Instead of hacking the PoS systems, hackers can hack the PoS terminals for card’s data

collection. However, the most popular way of doing this is known as “fake PoS.” A fake

PoS terminal looks identical to the original hardware, the customer inserts their card,

and a receipt prints with just an error code. The fake PoS contains memory to collect the

credit card information that the criminal later collects.

Figure 20 above depicts a forum listing that’s selling fake PoS.

As requested, we will try to obtain card and cardholder details from the original merchant

PoS terminals. We imagine that some malicious insider got access to the terminal

overnight and wants to use this for their own benefit.

There are two scenarios.

1. First scenario is when the terminal doesn’t have a separate, secure, physical

space for processing the card’s and cardholder’s data. This attack sounds

easy. We need to obtain the highest kernel privileges (supervisor mode) on the

system and then “scan” the payment processes to intercept the card’s details:

CVV2, Track2, and PIN.

2. Second scenario is when the terminal has a dedicated chip for storing the

crypto keys and processing

cryptographic operations. Initially,

this sounds like a secure way to

handle even physical exploitation

of devices. Hackers still can’t

extract keys, decrypt PINs or

magstripe tracks. However, it’s

not nearly as secure as you might

expect. As this research shows,

even in Ingenico terminals

that use dedicated chip for the

encryption, it’s still possible to

steal PIN codes and Track2 data.

The main reason is because PCI

requires terminals to send and

store sensitive data encrypted

but has vague requirements

about the processing of this data.

When we talk about cryptoprocessor, how

sensitive information should be handled:

• The PIN is entered and passed directly

to the cryptoprocessor.

• The cryptoprocessor encrypts the

PIN and passes it back to the main

processor and main app. All data

is put in the structure of ISO8583

authorization request and sent over to

the acquiring bank.

But how it actually works:

1. PIN is entered and passed to the

main app unencrypted.

2. Main app sends it to the

cryptoprocessor and gets back

encrypted.

3. Main app sends it over the

network in the assembled

ISO8583 request.

As you can see, hackers still have access

to unencrypted data during steps “a” and

“b.” To steal card and cardholder data,

attackers need to create malware that

scrapes the memory to search for patterns

of PIN and Track2. This memory-scraping

malware is well-known among companies

who suffered from card data breaches in

the past.

It’s fair to mention that PoS vendors don’t

write the payment applications themselves

- there’re service providers for this purpose.

And we found this example in one of the

banks we worked with. That example

is show in the section “Remote code

execution via the built-in TRACE mode

(CVE-2018-17765, CVE-2018-17772).”

Terminal cloning

To create a fully functional terminal clone, we

need to extract the main payment app and,

what’s more important, all cryptographic

keys that terminals use, including:

• Secure SSL communication key

• MAC key for ISO8583 signing

• PIN encryption key

• Encrypted storage key

• Boot integrity control key

If all these keys are stored on the

cryptoprocessor, it’s impossible to create a

functional clone of the terminal. However,

if even one key can be leaked or found

on the main storage, such as described in

the section “Remote code execution via

the built-in TRACE mode (CVE-2018-17765,

CVE-2018-17772),” this puts the whole

ecosystem at risk. For example, hackers

who change the Cardholder Verification

Method (CVM) limits and priority list, won’t

need to enter PIN codes or need to obtain

the PIN encryption key. We’re not showing

 171170

HITBMag | June 2021

here the exact location and the process of

extraction of the necessary keys.

Insecure modes

Due to back compatibility and a lot of

legacy features that need to be supported,

there are terminals with insecure modes

enabled:

• Magstripe or Technical fallback.

 » These two modes allow using cards
(even cards with the EMV chip) by
only swiping them and using the
magstripe part of the card. These
cards can be easily bought on the
dark market for about $5-10 each.

• Pan key or manual entry.

 » These terminals are popular in
hotels, airplanes and other offline
facilities. This functionality is for
situations when you dictate your
card number over the phone. In
most cases, the cashier on the other
side of the phone puts their PoS
terminal in manual mode to enter
your card details (payment card
number, expiration date, CVV, and
postcode for additional verification)
which is then sent to the acquiring
bank.

 » In many cases, your bank won’t
even need a valid CVV code for
these operations. Why is that?
Let’s imagine, you’ve bought some
expensive perfume on the trans-
Atlantic flight. You’ve landed and
only then the flight crew discovers
that your card doesn’t have sufficient
balance on it.

 » In this case, the merchant who

already provided their product
or service to you will try to make
a transaction in the terminal’s
manual mode. But wait, they didn’t
collect your CVV code from the back
of your card, did they? Exactly for
these scenarios, they allow charges
even without the correct CVV code.

• Visa Magnetic Stripe Data (MSD).

 » This is a legacy, insecure mode, which
sends the card’s magstripe data to
the terminal through contactless
N e a r - F i e l d - C o m m u n i c a t i o n
(NFC) technology. It pre-dates
the secure EMV standards. It’s
predominantly used within the
USA and was originally planned to
be terminated effective April 2019
by Visa’s requirement (Contactless
Payments: Merchant Benefits and
Implementation Considerations).
However, that’s now slowed down
and postponed due to the COVID-19
outbreak.

Under normal circumstances, a transaction

only proceeds within these vulnerable

modes when a few things happen:

• The merchant requests that this

feature is enabled on their terminal.

• The acquiring bank enables this

feature for the specific merchant on

their network.

• The issuing bank allows that feature

on the customer’s card.

However, our tests revealed that banks

verify only that the terminals have been

enabled for use with the feature. Banks

are assuming that no one can execute

arbitrary code, or replace the terminal’s

configuration files to enable these features,

themselves. This means insecure modes

can be activated on the compromised

terminals quite easily.

Refunds

Refunds enable customers to return

products or services that they didn’t

use. Typically, refunds must go back to

the original purchase card. This helps

to prevent money laundering schemes.

Otherwise, criminals would go to a big-box

retailer, pay for a new iPhone with a stolen

card, return it a few days later for a refund

to their personal card. And that’s just the

tip of the iceberg for card-based money

laundering schemes.

How does this work when customers have

lost their original card? Or when they used

Google Pay and have since accidently

deleted the mobile wallet? There’s two

solutions for those scenarios:

1. A technical solution. Each

receipt has a reference number

and when the cashier initiates a

refund, they enter a reference

number and the acquiring bank

checks that the refund goes to

exactly the same card. If the card

is lost/stolen, the cashier will

need to call the bank to initiate

a request for a non-standard

refund.

2. An organizational solution.

The acquiring bank doesn’t

check anything and allows

refunds back to any card. All

of the burden and liability of

checking the card falls back on

the merchant’s shoulders. If any

money laundering occurs, then

it’s the merchant’s loss and not

the bank’s.

Many banks who use the second model

are prone to this fraudulent scheme:

• An attacker creates a functional clone

of the terminal as described in section

7.2.

• An attacker enables insecure modes

and makes high-risk transactions with

stolen cards as described in section

7.1.

• An attacker makes refunds back to a

personal card.

• A month later, the issuing bank issues

a chargeback request to the acquiring

bank for fraudulent transactions. The

acquiring bank contacts the merchant

to ask for an explanation of what

happened. The merchant has no clue.

It’s worth noticing that when no fraud checks

are done on the banking side, hackers won’t

even need to make fraudulent payments

in the first place. They can just do refunds

for as long as the original company has

some money on their accounts. As you can

imagine, big supermarkets and networks

have a lot of money on their accounts. □

ACKNOWLEDGEMENTS

• Dmitry Sklyarov, Positive Technologies

• Egor Zaytsev, Positive Technologies

• Artem Ivachev, Positive Technologies

• Vladimir Kononovich, Positive

Technologies

• Maxim Kozhevnikov, Positive

Technologies

 173172

HITBMag | June 2021

Hunting
for bugs in
Telegram’s
animated
stickers
remote
attack
surface
POLICT

Executive Summary

Research is one of Shielder’s pillars – head over to our

research page to learn more about our commitment to

improve the security of the digital ecosystem.

What follows is my journey in researching the lottie animation

format, its integration in mobile apps and the vulnerabilities

triggerable by a remote attacker against any Telegram user.

The research started in January 2020 and lasted until the

end of August, with many pauses in between to focus on

other projects.

During my research I have identified 13 vulnerabilities in

total: 1 heap out-of-bounds write, 1 stack out-of-bounds

write, 1 stack out-of-bounds read, 2 heap out-of-bound read,

1 integer overflow leading to heap out-of-bounds read, 2

type confusions, 5 denial-of-service (null-ptr dereferences).

All the issues I have found have been responsibly reported to

and fixed by Telegram with updates released in September

and October 2020:

• Telegram Android v7.1.0 (2090) (released on September 30,

2020) and later;

• Telegram iOS v7.1 (released on September 30, 2020) and later;

• Telegram macOS v7.1 (released on October 2, 2020) and later.

Those updates include the fixes (the other types of clients

are not affected by the vulnerabilities I have identified) –

basically if you have updated your Telegram client in the last

4 months you are safe. If not, I recommend you to update it

as soon as possible.

https://www.shielder.it/advisories/

 175174

HITBMag | June 2021

INTRODUCTION

At the end of October ‘19 I was skimming the Telegram’s android app code, learning

about the technologies in use and looking for potentially interesting features. Just a

few months earlier, Telegram had introduced the animated stickers; after reading the

blogpost I wondered how they worked under-the-hood and if they created a new image

format for it, then forgot about it.

Back to the skimming, I stumbled upon the rlottie folder and started googling. It turned

out to be the Samsung native library for playing Lottie animations, originally created by

Airbnb. I don’t know about you but the combination of Telegram, Samsung, native and

animations instantly triggered my interest in learning more.

LOTTIE BY AIRBNB

Let’s start from the original Lottie project by Airbnb, from airbnb.io/lottie:

Lottie is a library for Android, iOS, Web, and Windows that parses Adobe After Effects

animations exported as json with Bodymovin and renders them natively on mobile and

on the web!

“As json” is particularly interesting here, I was expecting some tricky 90’s proprietary

binary specification but instead they chose to use one of the most common and simple

formats to date. (This got me also wondering whether memory corruptions would be

harder to find, but it was too early to tell!)

As we have read, a Lottie animation is defined as a JSON with some information such as

the frame rate “fr” and the version identifier “v” at its root, while most of the juicy features

lie in the “layers” array.

At its minimum, a Lottie animation looks like this:

1 {
2 “v”:” “, // version identifier
3 “fr”:1, // frame rate
4 “ip”:0, // in-point
5 “op”:1, // out-point
6 “layers”:[] // the good stuff (tm)

7 }

This doesn’t include any graphical element, but it’s useful to have a bare-minimum

example before getting complex (especially in structure-aware fuzzing, as we will discuss

later).

Remember the “Adobe After Effects animations exported as json” part? If you open

such an animation it contains a lot of useless information and animation’s metadata, for

example Adobe After Effects even supports “the Adobe ExtendScript language, which is

an extended form of JavaScript” (!), which is included in the JSON but not supported by

the Lottie parser we are going to talk about.

It’s important to notice here that Lottie animations are widely used, though most of the

time via static resources such as app’s transitions and animations. Another important thing

to notice is that other apps, such as Signal, chose Airbnb’s java/swift implementation.

RLottie BY SAMSUNG, FORKED BY TELEGRAM

Here we arrive at Samsung’s C++ library rlottie to parse Lottie animations. I’m not sure

why Telegram’s developers decided to use this implementation instead of Airbnb’s,

besides performance (and the chance to expose a 1-click native attack surface).

That being said, working with an open-source library will come in handy for setting up

the fuzzing environment and triaging the crashes, something which is not as trivial to do

in a black-box scenario.

RLottie doesn’t support all of After Effect’s features, however it is still actively maintained

to this day, even though I’m not 100% sure what Samsung uses rlottie for besides probably

Samsung Galaxy Watch Apps. (If you do know/find out where it’s used let me know at @

polict_ !)

By checking the README it’s clear that writing the harness will be trivial; by looking at

Telegram’s integration it’s even possible to copy the initialization settings and build a 1:1

stand-alone harness.

It’s important to note here also that Telegram developers chose to fork the rlottie project

and maintain multiple forks of it, which makes security patching especially hard. This will

turn out to be an additional problem since the Samsung’s rlottie developers do not track

security issues caused by untrusted animations in their project because they are not “the

intended use case for rlottie” (quote from https://gitter.im/rLottie-dev/community).

HARNESSING RLottie AND BUILDING A CORPUS

I had almost no experience in fuzzing before this research, so I started studying and

learning about two of the main players at the time: AFL++ and LibFuzzer. The majority of

entry-level writeups and walkthroughs available publicly were using AFL[++] so I started

with it while learning more about the alternatives available.

(Only later did I discover the perf_tips AFL++ documentation, I strongly recommend it to

people starting out fuzzing!)

The first version of the harness was a ctrl+c/ctrl+v frankenstein but it worked well as a

starting point:

 177176

HITBMag | June 2021

1 #include <rlottie.h>
2 #include <iostream>
3 #include <string>
4 #include <vector>
5 #include <array>
6
7 int entrypoint(std::string filename){
8
9 auto player = rlottie::Animation::loadFromFile(filename, NULL);
10 if (!player) {
11 printf(“error: renderer initialization failed\n”);
12 return 1;
13 }
14
15 // metadata[0] in Telegram/TMessagesProj/jni/lottie.cpp:130
16 size_t frame_count = player->totalFrame();
17 printf(“frame count:\t%zu\n”, frame_count);
18
19 // default width and height
20 uint32_t w = 512;
21 uint32_t h = 512;
22
23 // copied from https://github.com/Samsung/rlottie/blob/master/example/lottie2gif.cpp
24 auto buffer = std::unique_ptr<uint32_t[]>(new uint32_t[w * h]);
25
26 if (frame_count < 1){
27 printf(“no frames to render, quitting\n”);
28 return 1;
29 }
30
31 printf(“starting...\n”);
32 for (size_t frame = 0; frame < frame_count; frame++) {
33 rlottie::Surface surface(buffer.get(), w, h, w * 4);
34 player->renderSync(frame, surface);
35 }
36 printf(“done!\n”);
37
38 return 0;
39
40 }
41
42 int main(int argc, char **argv){
43 if (argc < 2){
44 printf(“usage: %s <lottie.json>\n”, argv[0]);
45 return 1;
46 }
47
48 return entrypoint(std::string(argv[1]));

50 }

Having verified the harness was working, I started looking for animated stickers online

to build a minimal corpus to start fuzzing: Telegram channels available as a webpage

on t.me/ URLS and lottie online communities were especially useful for scraping user-

generated stickers in an automated curl-grep-gzip fashion.

FUZZING TECHNIQUES AND RESULTS

Coverage-guided fuzzing

If there’s one thing I have learned the hard way in my information security experience

(and later again by reading twitter heh), it is that many times doing the laziest thing would

have produced the same output as a sophisticated technique, but in way less time: this

research was no difference.

After instrumenting and improving the harness and launching afl-fuzz, crashes started to

appear in a matter of seconds. I thought that if anybody was fuzzing it, they were either

exploiting the issues or still looking for ASLR-breaking gadgets – but that’s just a guess!

From the first crash triage cycle it seemed some issues could be serious: heap-based

out-of-bounds read/write, stack-based out-of-bounds write and high-address SEGVs all

looked promising, so I started investigating them while studying the code and continuously

improving and keeping the fuzzer running.

Most of the remaining issues were null-pointer dereferences not useful from an

exploitation perspective, however in this context - as we will see later - they might

become an annoying denial-of-service bug for non-technical users.

Layman’s guide to crash testcase minimization (excursus)

After triaging and prioritizing the crashes I started analyzing the root-cause of each of

them. The problem was that since the library parsed JSONs and skipped useless keys,

the crashing testcase included a ton of unnecessary keys and values (imagine a single

line 2KB JSON with multiple nested void keys/arrays/strings/objects). A

t the beginning I thought of writing a JSON minimizer tool in python, but remembering the

“try lazy first” way of thinking I hacked together halfempty, ASAN and grep to bruteforce

their way to the minimized still-crashing-in-the-same-way JSON, and it worked pretty

well!

Let’s have a look at one example fed to halfempty:

1 #!/bin/bash
2 timeout -k1s 4s rlottie/parser-asan /dev/stdin 2>&1 | grep -q ‘WRITE of size 4 at’ &&

 exit 0 || exit 1

I could have added more filters to the grep (error type, $pc, stacktrace, …) but it wasn’t

really necessary here. Afterwards I could simply run halfempty to bruteforce a minimized

testcase:

halfempty --stable --zero-char=0x20 --output=min.json run_and_grep_hbof4write.bash raw.json

This helped because, without further checks besides checking for a SIGSEGV (test $?

-eq 139), halfempty would have produced a minimized testcase which crashed rlottie

with a null-pointer dereference (still a SIGSEGV but not what I was looking for).

 179178

HITBMag | June 2021

Heap out-of-bounds write in VGradientCache::generateGradientColorTable

Let’s walk through one of the most impactful issues I have found: a 4-bytes heap out-of-bounds write in VGradientCache::generateGradientColorTable.

Here’s a sample ASAN report snippet with a bit of context:

==24332==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x621000001130 at pc 0x0000005652a4 bp 0x7ffef2d69190 sp 0x7ffef2d69188
WRITE of size 4 at 0x621000001130 thread T0
 #0 0x5652a3 in VGradientCache::generateGradientColorTable(std::vector<std::pair<float, VColor>, std::allocator<std::pair<float, VColor> > > const&, float, unsigned int*, int) rlottie/src/vector/
 vdrawhelper.cpp:159:25
 #1 0x574d5c in VGradientCache::addCacheElement(long, VGradient const&) rlottie/src/vector/vdrawhelper.cpp:125:30
 #2 0x573645 in VGradientCache::getBuffer(VGradient const&) rlottie/src/vector/vdrawhelper.cpp:87:24
 #3 0x569a39 in VSpanData::setup(VBrush const&, VPainter::CompositionMode, int) rlottie/src/vector/vdrawhelper.cpp:761:46
 #4 0x53b528 in VPainter::setBrush(VBrush const&) rlottie/src/vector/vpainter.cpp:140:22
 #5 0x5c2a15 in LOTLayerItem::render(VPainter*, VRle const&, VRle const&) rlottie/src/lottie/lottieitem.cpp:332:18
 #6 0x5c841e in LOTCompLayerItem::renderHelper(VPainter*, VRle const&, VRle const&) rlottie/src/lottie/lottieitem.cpp:651:28
 #7 0x5c7744 in LOTCompLayerItem::render(VPainter*, VRle const&, VRle const&) rlottie/src/lottie/lottieitem.cpp:602:9
 #8 0x5c0348 in LOTCompItem::render(rlottie::Surface const&) rlottie/src/lottie/lottieitem.cpp:198:17
 #9 0x591070 in AnimationImpl::render(unsigned long, rlottie::Surface const&) rlottie/src/lottie/lottieanimation.cpp:107:16
 #10 0x5922a5 in rlottie::Animation::renderSync(unsigned long, rlottie::Surface&) rlottie/src/lottie/lottieanimation.cpp:206:8
 #11 0x68b146 in entrypoint(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) rlottie_parser.cpp:40:17
 #12 0x68b40e in main rlottie_parser.cpp:60:16
 #13 0x7f22916cebf6 in __libc_start_main /build/glibc-S9d2JN/glibc-2.27/csu/../csu/libc-start.c:310

 #14 0x41e439 in _start (rlottie/parser-asan+0x41e439)

The vulnerability stems from an incorrectly bounded loop (comments are mine):

1 bool VGradientCache::generateGradientColorTable(const VGradientStops &stops,
2 float opacity,
3 uint32_t *colorTable, int size)
4 {
5 int dist, idist, pos = 0, i;
6 bool alpha = false;
7 int stopCount = stops.size();
8 const VGradientStop *curr, *next, *start;
9 uint32_t curColor, nextColor;
10 float delta, t, incr, fpos;
11
12 if (!vCompare(opacity, 1.0f)) alpha = true;
13
14 start = stops.data();
15 curr = start;
16 if (!curr->second.isOpaque()) alpha = true;
17 curColor = curr->second.premulARGB(opacity); // out-of-bounds value, curr->second is controlled
18 incr = 1.0 / (float)size; // static
19 fpos = 1.5 * incr; // static
20
21 colorTable[pos++] = curColor;
22
23 while (fpos <= curr->first) { // curr->first is controlled and pos is not checked to be < size, leading to
24 colorTable[pos] = colorTable[pos - 1]; // out-of-bounds write
25 pos++;
26 fpos += incr;
27 }
28 [...]

 181180

HITBMag | June 2021

As we can see in the snippet, pos is not

checked against size (the colorTable array

size), leading to writing out-of-bounds 4

bytes after the end of the colorTable array

allocated in heap memory.

Specifically, while fpos, size and incr are

static, curr->first and curr->second come

directly from the animated sticker but

colorTable is an uint32_t array of static size

1024, hence it is possible to overwrite an

arbitrary amount of heap memory after it by

carefully using a float number as curr->first

in the animated sticker file.

The written bytes are controlled via the

sticker file too, but constrained to ARGB

encoding performed in premulARGB() and

getColorReplacement().

While it’s probably only useful in 32bit

environments, coupled with an additional

ASLR-bypass gadget it might lead to remote

code execution. That being said, during my

research I couldn’t find memory-probing

oracles or remote infoleaks to overcome

this protection so I didn’t investigate further.

The advisories for my other issues are

available at shielder.it/advisories!

Structure-aware fuzzing

While analyzing the coverage traces I

noticed that most of the mutated testcases

were breaking the JSON syntax or messing

up the few required JSON keys, reaching

very shallow code. But in those same days I

learnt about structure-aware fuzzing, which

looked like what I was after: since rlottie

parses structured data (JSONs), i needed

some way to mutate the animations without

breaking its syntax; also, I wasn’t much

interested in fuzzing the JSON decoding

because it was handled by rapidjson inside

rlottie itself. While the -x dictionary flag

in AFL++ improved the situation, it didn’t

instruct the fuzzer how to add or remove

meaningful elements to the animation.

Let’s have a little introduction on structure-

/ grammar-aware fuzzing for who’s not

familiar with it (feel free to skip this

paragraph if you do!). From the structure-

aware fuzzing wiki I linked earlier:

Coverage-guided mutation-based

fuzzers, such as libFuzzer or AFL, are

not restricted to a single input type and

do not require grammar definitions.

Thus, mutation-based fuzzers are

generally easier to set up and use than

their generation-based counterparts.

But the lack of an input grammar can

also result in inefficient fuzzing for

complicated input types, where any

traditional mutation (e.g. bit flipping)

leads to an invalid input rejected by the

target API in the early stage of parsing.

As an example let’s imagine we feed

to AFL++ a corpus made of JSONs and

point it against the harness we have seen

earlier, what testcases would it produce?

Mostly broken JSONs. This is because

by applying “standard mutations” (e.g. bit

flipping) it might mutate a char responsible

for the JSON structure, breaking its syntax.

This will lead to shallow code coverage,

because the parser will exit once it detects

the JSON is malformed, and to a lot of

wasted executions, because they couldn’t

advance the coverage.

But if we instead create a grammar

definition about how are lottie animations

actually structured, we’d be able to have

more control about the testcase mutations.

This is where protobuf and libprotobuf-

mutator come in the picture: by creating a

grammar definition in the protobuf syntax and using libprotobuf-mutator to instruct the

fuzzer how to mutate a protobuf message, we can produce always syntactically valid

testcases (i.e. in this case valid JSONs) to feed the target harness.

Let’s see an example protobuf message I have written for the main structure by reading

the source code and mattbas’s python-lottie project documentation:

Writing the rlottie protobuf grammar to use

as an intermediate format turned out to

be particularly time consuming: while the

library code was easily readable, it required

some tricky design decisions (proto2 or

proto3? multiple types with repeated keys

or minimal type + add-ons? etc…) not trivial

as setting up the coverage-guided harness,

leading to a ~1k LOC harness.

Moreover (probably because of that monster harness) the fuzzer was way slower than

“simple” coverage-guided benchmarks (x4 slowdown on the same hardware).

To sum up, the structure-aware fuzzer turned out to be faster than the “simple” coverage-

guided strategy in finding the same bugs, but required a bigger time investment upfront

just to start it, so I’m happy for the knowledge I have acquired but I’d probably recommend

and use it against more complex codebases than rlottie, e.g. browser’s IPC.

TELEGRAM’S ANIMATED STICKERS ATTACK SURFACE

So how are animated stickers implemented? They are basically files uploaded to

Telegram’s cloud drive and referenced in messages by setting the application/x-tgsticker

mime type and attaching the cloud coordinates.

A curious limitation I noticed is that in unencrypted chats (the default mode for chats, i.e.

not “secret chats”) during my testing I couldn’t receive the malicious sticker to my other

testing accounts; this got me wondering whether Telegram servers were doing any kind

of parsing/filtering of the stickers I uploaded, but that’s hard to tell since Telegram’s

server-side code is not open-source (yet?).

This also limited the potential impact since only secret chats were usable to send an

arbitrary animated sticker, probably because the file uploads are E2E encrypted too.

Another interesting thing I noticed about secret chats is that, besides the macOS client,

it’s not possible to configure the client to prevent secret chats from being automatically

accepted on that device. This allowed me to automatically start a secret chat and send

animated stickers to anyone via Frida (thanks @thezero for the help with the JavaScript

code!), until after my reports Telegram introduced the “Filter New Chats from Non-

Contacts” setting (which is still non-default so probably not enabled by everyone).

182

HITBMag | June 2021

Unfortunately the animated stickers are parsed and rendered only when the chat is

opened, making these vulnerabilities reachable only if the chat is opened by clicking on

it.

Furthermore, since the animated sticker is downloaded on the device, everytime the

chat is opened the issue triggers; this turned useless memory corruptions (such as null-

pointer dereferences) into an annoyingly persistent crash which would have prevented

non-technical victims from accessing the previous messages in the chat. (Tech-savvy

people could have extracted them from the local Telegram’s database, or used another

client altogether.)

How they patched it

After my reports, Telegram introduced an interesting way to prevent such attack surface

from being available remotely in a single click, without breaking the end-to-end encryption

altogether: each and every animated sticker received in a secret chat (remember that

malicious stickers in normal chats are filtered) are verified to be actually part of a sticker

set (or “sticker pack”, i.e. a collection of stickers of a specific theme/topic).

This probably comes from my own proof-of-concepts where I faked sticker sets references,

but at the end of the day it successfully prevents malicious stickers from being decoded

on the victim device since during the creation of a sticker set every sticker is parsed

(yes, I guess the issues I have found could have been used against Telegram servers

themselves in the creation of a sticker pack, but again since the server-side code is not

open-source that’s just a guess).

We can see an example implementation of these new checks in

verifyAnimatedStickerMessage, part of Telegram’s Android source code:

1 TLRPC.Document document = MessageObject.getDocument(message);
2 String name = MessageObject.getStickerSetName(document);
3 if (TextUtils.isEmpty(name)) {
4 return;
5}
6 TLRPC.TL_messages_stickerSet stickerSet = stickerSetsByName.get(name);
7 if (stickerSet != null) {
8 for (int a = 0, N = stickerSet.documents.size(); a < N; a++) {
9 TLRPC.Document sticker = stickerSet.documents.get(a);
10 if (sticker.id == document.id && sticker.dc_id == document.dc_id) {
11 message.stickerVerified = 1;
12 break;
13 }
14 }
15 return;
16 }

sticker.id == document.id verifies that the unique Telegram cloud file identifier (used to

reference also stickers, even in secret chats) equals the identifier of a sticker in a public

sticker set, while sticker.dc_id == document.dc_id verifies that the datacenter identifiers

match (I’m not 100% sure this was necessary). This

way a potential attacker not only needs to find

additional issues in the rlottie forks, but also a bypass

for these new authenticity checks.

CONCLUSION

Before starting this research in 2019 I would have

been pretty skeptical if you had asked me whether

the following year I’d find a single memory corruption

in Telegram. Today I shared with you the story of

how I have found 13, some with a higher impact than

others but all which were promptly fixed by Telegram

for all the device families supporting secret chats:

Android, iOS and macOS.

This research helped me understand once more

that it’s not trivial to limit attack surfaces at scale

in end-to-end encrypted contexts without losing

functionalities. I hope that this blogpost inspired

you in learning more about fuzzing and information

security in general. If you have any comment or tip

for improvement it would be greatly appreciated:

you can reach me at @polict_ – until next time! □

 185

HITBMag | June 2021

CROWDSTRIKE
DETECTION

REPORT “TheZoo”
Filipi Pires

INTRODUCTION

The purpose of this document, it was to execute several

efficiency and detection tests in our lab environment protected

with an endpoint solution, provided by CrowdStrike, this

document brings the result of the defensive security analysis

with an offensive mindset performed in the execution of 33

folders download with Malwares by The Zoo repository in

our environment.

Regarding the test performed, the first objective it was to

simulate targeted attacks using known malware to obtain a

panoramic view of the resilience presented by the solution,

with regard to the efficiency in its detection by signatures,

downloading these artifacts directly on the victim’s machine.

The second objective consisted of analyzing the detection

of those same 32 folders download with Malwares (or those

not detected yet) when they were changed directories, the

idea here is to work with manipulation of samples (without

execution).

The third focal objective it was the execution of a ScanNow

inside victim’s machines for effectiveness analysis.

With the final product, the front responsible for the product

will have an instrument capable of guiding a process

of mitigation and / or correction, as well as optimized

improvement, based on the criticality of risks.

 187186

HITBMag | June 2021

Scope

• The efficiency and detection analysis had as target the Crowdstrike Endpoint

Protection application in Sensor Version: 5.36.11809.0

• Installed in the windows machine Windows 10 Pro; Hostname - Threat-Hunting-
Win10-POC, as you can see in the picture below:

Image 1.1: Windows 10 Pro 2019 Virtual Machine

Project Summary

The execution of the security analysis tests of the Threat Hunting team was carried out

through the execution of 33 folders with many Malwares in a virtualized environment.

It was carried out in a controlled and simulated a real environment, together with their

respective best practices of the security policies applied.

The test lasted for 2 days, without count the weekend, along with the making of this

document. The intrusion test started on 8 October 2020 and it was completed on 19

October 2020.

RUNNING THE TESTS

Description

A virtual machine with Windows 10 operating system it was deployed to perform the

appropriate tests, as well as the creation of a security policy on the management platform

(Threat-Hunting–Win10-POC) and applied to due device.

Image 1.2: Virtual Machine with Policy applied

The policy used was named Default (Windows), following the best practices

recommended by the manufacturer, and, for testing purposes, all due actions were

based on an aggressive detection method.

Image 1.3: Policy Next-Gen Antivirus (Default Policy)

 189188

HITBMag | June 2021

One of the differences that we see with CrowdStrike is the non-use of Icon related of the

binary.

Image 1.4: Installation binary information

First Test

The first stage of the tests was downloading 33 folders of different kinds of malwares.

All of which are known to be older and are in the public repository, maintained by the

security community called The Zoo. The purpose of this test was to simulate the same

process as a user receiving and extracting a .zip file in their own environment.

Image 1.5: Download 33 Folders with malicious files

Image 1.6: Extraction of 33 Folders with malicious files

https://github.com/ytisf/theZoo/tree/master/malwares/Binaries

 191190

HITBMag | June 2021

After performing the action of extracting the files, it was possible to verify that CrowdStrike

Security Endpoint didn’t detect any malware when it was downloaded to the victim

machine. But if executed inside the environment, it could perform an infection.

All those malwares are known and should be detected by signature, but they didn’t.

Regarding some with the vendor CrowdStrike doesn’t work based on signature, this is

one of the reasons, low consumption of computational resources:

Machine learning (ML) is used for pre-execution prevention. Falcon Host employs sophisticated

machine learning algorithms that can analyze millions of file characteristics to determine if a

file is malicious. This signature-less technology enables Falcon Host to detect and block both

known and unknown malware. CrowdStrike ML technology has been independently tested and

furthermore, it was provided to VirusTotal to contribute to the security community for the benefit

of all. For more information about CrowdStrike ML, read the blog, “CrowdStrike Machine Learning

and VirusTotal”. [1] [2]

Second Test

The second stage of the tests was through the transfer of folders to another directory

within the same machine, the purpose of this test was to simulate a transfer of files within

the same environment.

Image 1.7: __NEW_FOLDER__(CrowdStrike) – Malware manipulation

When a new file is generated on the disk, soon we should have a new entry in a block of

that disk and in theory the antivirus should take some action (considering that it has the

real time enabled).

We could define it as a file manipulation (still not running) where the endpoint protection

is already necessary, considering that a new directory was created. Soon, we would

have a new repository with several hashes inside to be examined.

After performing this second test, we saw that the same 32 folders with malwares were

detected yet. As we can see below and mentioned earlier, these malware were already

known and validated even in the tool about antivirus scanning known as a Virus Total.

Image 1.8: Malwares – Not Detected

https://www.crowdstrike.com/resources/data-sheets/preventing-malware-beyond/
http://[2]
http://Virus Total.

 193192

HITBMag | June 2021

Third Test

The third stage of the tests was through the use of the FULLSCAN action by Cloud

CrowdStrike. It was to perform a complete scan on the machine manually. In this way, all

malware should be eliminated, as they are already known malware as mentioned earlier,

but in this case, we can’t do this test, i.e, CrowdStrike has a scanless technology.

Spotlight utilizes scanless technology, delivering an always-on, automated vulnerability

management solution with prioritized data in real time. It eliminates bulky, dated reports

with its fast, intuitive dashboard. [3]

All surprises forced us to perform an unscheduled test for this stage.

Fourth Test

The fourth stage of the tests (unscheduled) using “Malware Execution” manually. This

way, we can look the behavior of these detection engine works in real-time and all

malware should be eliminated, as they are already known malware as mentioned earlier.

First of all, we executed the snapshot in our lab machine.

We then started the manual execution of some malware chosen at random.

• First malware known as Cerber and It was BLOCKED (Image 1.10)

• Second malware known as Cryptowall and It was BLOCKED (Image 1.11)

• Third malware known as Mamba and It was BLOCKED (Image 1.12)

Image 1.9: Snapshot

Top to bottom:

Image 1.10

Image 1.11

Image 1.12

http://[3]

 195194

HITBMag | June 2021

After two more tests using PE (Portable Executable) file, and all those files were

blocked. Then, we tried to execute a VBS file, (Virtual Basic script written in the VBScript

language). It contains code that can be executed within Windows or Internet Explorer, via

the Windows-based script host (Wscript.exe), to perform certain admin and processing

functions. After 2 minutes we can see that Windows-based script host (Wscript.exe) being

executed in our machine, and not being blocked by CrowdStrike.

 Image 1.14: VBS Script executing wscript.exe process

Image 1.13: VBS Script Executed

After a while, we can see an alert with the message in Portuguese: “You have files waiting

to be recorded to disc” as you can see in Image 1.15. When this alert it’s open, we can

seen in Image 1.16 that there is an ISO media on our machine. There are many files in

this ISO to be performed and we can find the desktop.ini.Vbs.Vbs as a file done to se

executed.

Image 1.15: Alert box “You have files waiting to be recorded to disc”

Image 1.16: Alert box “You have files waiting to be recorded to disc”

 197196

HITBMag | June 2021

After 4 min, it is possible to see in Image 1.17 that there is an infection inside the our

“victim” machine, all those file were change to extension .Vbs as we see in the ISO

media. As we can see in Image 1.18, this malware is associated with the execution of VBS

- Visual Basic Script and he change all extension in the victim environment.

Image 1.17: Infection Happening

Image 1.18: Infection complete.

IMPACT

At the end of this test, it was possible to verify that there many malwares that, when

executed inside the environment, may perform an infection. A few notable points:

• CrowdStrike didn’t work with Signature based; which makes our environment very

vulnerable.

• Dependency of the real time engines; which may be a risk as noted in our test;

• After the first extraction, no one know malware were detected; when it comes a

major malware infection we can have several types of attack vectors, so it is very

important we have an efficient detection.

• Malicious EXE files Not Detected; PE files not detected even though malicious; it

was not detected.

• Malicious ELF files Not Detected; ELF file not detected even though malicious; In

our test environment, wouldn’t be dangerous, because our environment it was

Windows, but should be block but it was not detected.

• After second test no one know malware were detected; After this moviment, no one

malware it was detected.

• Infection based on VBS (Virtual Basic Script) – Known Malware; This is the big

surprise.

• I-Worm.NewLove - Worm-type malware, with high criticality, associated with the

execution of VBS - Visual Basic Script, we have as a characteristic high propagation

within the environment in which it is executed.

Basic Properties
MD5 95f4156f23d61b1b888d3b3bb87b6d72
SHA-1 09d2470d17821728cd1da95186f5f51272634287
SHA-256 2246a1a31f8ef272a8ac44c97d383d0607d86ddf4509a176b157853d9c6e0028
Vhash 773a411c5a56087d4d7c5cc36bbf2901
SSDEEP 1 5 3 6 : c f Y 1 w B D t r 9 4 P L D c w Z A N v 1 p G 1 Z u Q K 1 0 O k s k /
L1xVCXJW5C6U7EjSRVveO:R1wBJoL4F1w6QK1qFnVCXJYCF7aO

Names
I-Worm.NewLove.zip
output.149790737.txt;

http://I-Worm.NewLove

 199198

HITBMag | June 2021

CORRECTIVE ACTIONS

The following actions will be taken to improve the protection environment of our assets:

• This report will be sent to CrowdStrike Team to validate how the detection flow for

known malware works, and why this VBS/Malware wasn’t detected;

• Validate the performance of NGAV, Machine Learning and other components,

regarding this type of detection;

• The best practices of the configurations will be revalidated with the CrowdStrike

team. □

Image 1.19: I-Worm.NewLove – VirusTotal

This could be your
brand.

Contact us for branding opportunities.
editorial@hackinthebox.org

mailto:editorial%40hackinthebox.org?subject=Branding%20opp%20with%20HITBMag

202

 For submissions and branding, visit magazine.hitb.org
or email to editorial@hackinthebox.org

Twitter / YouTube: @hitbsecconf
Facebook / LinkedIn: Hack In The Box

© 2021 Hack In The Box. All rights reserved.

