
A Brief
Introduction
to VEGA 66

04

Bot Wars - The Game
of Win 32/64 System
Takeover
Cover Story

ANDROID
PERSISTENT
THREATS 20

Volume 3, Issue 009, November 2012 www.hackinthebox.org

ContentsEditorial
Hello readers and welcome to the somewhat overdue Issue 009 of HITB
Magazine. As they say, better late than never!

Originally, Issue 009 was supposed to have been released along side our
10th year anniversary conference in Kuala Lumpur, HITB2012KUL last
month. However, the madness of putting on a conf with 42 of our most
popular speakers from the last decade combined with celebrating 10
years of HITB awesomeness was just too much and we had to put the
magazine release on hold.

But with all good things that take time, we think you’ll be well pleased
with what we have lined up for you in this issue as it’s packed to the brim
with hacking goodness including articles on Android Persistent Threats
and a deeper look at the Memory Copy Functions in Local Windows Kernel
Exploitation!!

We’re always on the look out for great new content and research
material, so if you’re interested in getting published, drop us a line. In
the meantime, enjoy the issue!

The Editorial Team
Hack in The Box Magazine

WINDOWS SECURITY
Bot Wars - The Game of Win32/64
System Takeover 04

Memory Copy Functions in Local
Windows Kernel Exploitation 12

MOBILE SECURITY
Android Persistent Threats 20

HARDWARE SECURITY
Does the Analysis of Electrical
Current Consumption of Embedded
Systems could Lead to Code
Reversing? 28

WEB APPLICATION SECURITY
To Hack an ASP.Net Site?
It is Difficult, but Possible! 48

MOBILE SECURITY
A Brief Introduction to VEGA 66

Editor-in-Chief
Zarul Shahrin

http://twitter.com/zarulshahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Technical Advisor
Mateusz “j00ru” Jurczyk

Gynvael Coldwind

Design
Shamik Kundu

http://twitter.com/cognitivedzine

Website
Bina Kundu

HITB Magazine – Keeping Knowledge Free
http://magazine.hackinthebox.org

Issue 009, November 2012

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB04 05

W
ind

ow
s S

ec
ur

ity
W

indows Security

B
otnets have been in existence for years. Third Generation Botnets (TGB’s)
use sophisticated attack vectors to infect users at a large scale. Botnets
are cyber weapons that can jeopardize the integrity and security of the
critical infrastructure on the Internet. There is an insidious war going among

different generations’ of botnets to exploit the target systems. This concept is
termed as bot wars. This article explores the details of bot wars and how the bots kill
each other to control the infected systems.

1. THE CRUX OF BOT WARS
Bots are the building blocks of botnets which are networks of compromised machines.
Bots are the spy agents that control the infected machines and manipulate them
accordingly. The compromised systems can be turned into zombies without much
efforts. Considering the situation of present-day cyber world, Internet is facing
threats from a number of botnets possessing different attack capabilities. The
idea behind bot wars is to take control of the infected machines by killing other
adversaries in the system. To increase the number of bot agents, the malware author
embeds a code in the bot itself that scans the system for other threats and remove
them accordingly by restoring the control of the compromised (infected) machine.
As a result, the infected machine becomes a part of the different botnet. This adds
a lot of value to the underground market because more bots result in more data that
can be sold easily with profits. In addition, the bots can also be rented on demand as
a crimeware service in the underground market.

Third Generation Botnets (TGB’s) are highly motivated to steal sensitive information
in order to conduct frauds and money laundering activities. Zeus started this era of
botnets, and was further accompanied by SpyEye. An interesting analysis of Zeus bot
has been presented here [1,2]. For understanding the design of SpyEye botnet, the
researchers have presented a detailed research paper here [3]. The similar concept is

also followed by other hybrid bots that utilize characteristics of different generations
of botnets. SpyEye has a built-in component to detect Zeus bot in the infected system
and kills it to take control of the Win32/64 system. This paper is divided as follows:

• In section 2, mutex objects are discussed to understand their importance in the
operating system.

• In section 3, adversary detection logic is discussed which is implemented by bots
to destroy the other threats present in the infected system.

• In section 4, proactive defense (PDEF+) component is presented which is used
to eradicate the adversaries on the system. We also show how different API
functions are used to build PDEF+ component.

2. UNDERSTANDING MUTEX OBJECTS
To understand the adversary detection logic (detecting other threats in the system)
and PDEF+ in detail, a complete understanding of mutex objects is required. Mutual
exclusion is a well known concept. But, it is good to discuss the importance of mutex
objects in the context of this paper. Mutex objects are used to implement mutual
exclusion principle in which no two processes are allowed to access the shared memory
at the same time. The shared memory region is also referred as a critical section.
Mutex is a synchronization object which is accessed by one thread at a time. No two
threads are allowed to own a single mutex. For example: If two threads are required
to access the mutex object to gain sole ownership, the concept of FIFO works. In
this, a queue is generated and every subsequent thread waits for an active thread to
release the mutex so that shared region becomes available for the thread waiting in
the queue. It is possible for a thread running in a different process to access the mutex
object of another process by duplicating the handle. This technique is used in the
implementation of adversary detection logic in the real time. Without obtaining handle
to the active process, the active mutex objects cannot be enumerated or scanned.

All the windows’ resources such as mutexes, events, semaphores, etc. are managed
by a Object Manager (Ob), which is a subsystem implemented in the windows kernel.
Ob manages and keeps track of available resources in the active processes and avoids
complexities. Every object has an associated handle which is an abstract reference
to the object in the memory for performing operations using built-in API’s. The
\BaseNamedObjects directory in the Ob manager holds different mutexes, events,
semaphores, and other resources. To get a list of active mutex objects in the system,
a number of NT* functions are called to trap the kernel and execute the code. WinObj
[9] tool by Sysinternals can automate this process. For example: Let's see if Malware
Anti Bytes is running inside a system which is an active threat protection software as
shown in Figure 1(see next page).

The related mutex object is shown in Figure 2 (see next page).

The “MBAMTray CtrlMutex” object is generated by the legitimate software when
an active MBAM process runs in the system. For understanding more about symbolic
links (local, global, session) in the windows kernel object namespace, refer here
[4,5]. In addition, mutex analysis is very important in incident response and network
forensics. For more information about mutex object analysis, read this article on Net
Witness's blog [6].

Bot Wars - The Game
of Win32/64 System
Takeover
Aditya K Sood, IOActive

06 07

3. ADVERSARY DETECTION MODEL
Bot implements a well defined logic to detect its adversaries in the system. In this
paper, we refer an adversary to a bot or a threat detected on the target system.
Bots do not perform any critical operations in the infected system until the system
is scrutinized against adversaries. Figure 3 (see facing page) shows the adversary
detection logic used by the bots to detect and remove the adversary from the
infected system. This helps the bots to retain the control of the infected machines.

Step 1: Infection Entry Point (IEP) is defined as a vulnerability that is exploited to
install malware in the system. It can also be an attack vector that allows the attacker
to potentially compromise the system and infect it afterwards.

Step 2: The installed malware is usually a dropper, which is a wrapper used to hide
the real bot. On successful downloading of the dropper, the bot extracts itself and
deletes the dropper.

Step 3: Before complete execution, the bot scans the system memory for noticeable
objects such as mutexes, etc. to scrutinize the presence of other threats in the system.

Step 4: If the bot detects a mutex that is used by an adversary (other bot agent),
then it triggers the PDEF+ component to obtain a handle to that mutex object and
remove it from the system. If the adversary is not found, the bot executes in the
system without any complexity.

Step 5: If the adversary is not removed from the system due to any reason, the bot
restricts its execution in the system. The bot remains dormant for a certain period
of time. After this, the bot starts the same process again to scan the system for
known threats.

This logic can be implemented in several ways, but we will concentrate specifically
on mutex based detection and related operations.

4. PROACTIVE DEFENSE (PDEF+)
The PDEF+ module is used as a weapon in the bot wars. In other words, it is considered
as an advanced threat removal component. Figure 4 (see next page) shows different
methods that can be used by PDEF+ component to detect the presence of other
threats on the system. This kind of functionality has been used by sophisticated
malware (bots) such as SpyEye, Dorkbot and others. Generic malware do not use this
kind of advanced feature. Designing this functionality of proactive defense shows that
the malware authors are writing sophisticated malware frameworks for automating

FIGURE 2: Malware bytes - Active Mutex in the System

FIGURE 3: Adversary Detection Logic

W
ind

ow
s S

ec
ur

ity
W

indows Security
FIGURE 1: Malware bytes - Anti Malware Process is Active

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

08 09

the infections and killing the adversaries at the same time. PDEF+ is capable enough
to detect, remove and modify the additional threats from the system.

To support this concept, this article presents a prototype for detecting a target object
used by additional threat agent in the infected system. This PDEF+ component is
designed based on the presence of mutex objects in the system. This logic is heavily
used by the highly sophisticated malware mainly botnet frameworks. Due to modular
architecture, the botnet frameworks are accompanied with PDEF+ components that
are configured while building and updating the bots. Figure 5 (opposite page) shows
how Dorkbot (NGR) [7] monitors the process (iexplore.exe) operations to detect the
possible threats that enter in the system through automated Browser Exploit Packs’
(BEP) frameworks.

Table 1 shows some of the examples of bots that implemented PDEF+ to kill their
adversaries.

4.1 Prototype of PDEF+ Model
The PDEF+ model is based on the implementation of Win 32 API functions. The bot is
designed to use the windows built-in API calls to detect the presence of an adversary
in the system using mutex objects. The prototype is presented as follows:

• The NtQuerySystemInformation (ntdll.dll) function is called to obtain system level
information available in the kernel mode.

• The RtlAdjustPrivilege function is called to enable the privileges with a flag as
SET_DEBUG_PRIVILEGE in the calling process.

• On obtaining information about a number of active processes in the system using
flag PSYSTEM_HANDLE_INFORMATION as a part of System Information parameter
in NtQuerySystemInformation, a loop is constructed to iterate over all the active
processes in the system.

• The OpenProcess function is called with a process access right parameter set to
PROCESS_DUP_HANDLE. The NtDuplicateHandle function is called to obtain the
handle of the target process. In other words, the duplicated handle is a replica
of the original handle and any modifications or alterations on the objects in the
target process reflect through both handles.

• Once the process is opened and handle is obtained, NtQueryObject function is
called to extract different types of information associated with the objects. It
uses OBJECT_NAME_INFORMATION structure from the ObjectNameInformation
class to get the information about the running objects in the target process.
Basically, the _OBJECT_NAME_INFORMATION carries the name of the objects
active in the running processes.

• Once the object name is extracted, it is matched against the object name used by
the adversary in the system. This is done to verify that the running process holds
information about the other threat in the system. For example: A bot that hooks
explorer.exe process in the system definitely holds a reference to the mutex object.

• At this point, if the target process has an object whose name matches with the
object name used by the adversary in the system, next steps are taken as follows:
• Now, the aim is to communicate with that object in the target process using

named pipes i.e. through interprocess communication mechanism. Let’s say the
infected process has an object name __INFECTION__ (mutex). For interprocess
communication between processes, the named pipe is generated as L“\\\\.\\pipe\\
{Name.Buffer}”. The Name.Buffer holds the name of the object such as mutex
name. This named pipe is used to communicate with the object present in the
target process in the system.

• After this, the CreateFileW function is called. The dwDesiredAccess parameter is
passed with GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_
WRITE flags. In addition to this, dwCreationDisposition parameter is passed with
OPEN_EXISTING value to verify whether the object already exists or not. If the object
is not present or handle fails, WaitNamedPipeW function is called with infinite

Bot Name Target Bots
Dorkbot - NGR gBot (v1 and v2)
 Butterfly Flooder
 Butterfly Bot
 Nearly all IRC bots
SpyEye Zeus

W
ind

ow
s S

ec
ur

ity
W

indows Security
FIGURE 4: View of PDEF+ TABLE 1: A glimpse of Bot Wars

FIGURE 5: A Module of PDEF+ Component in Dorkbot (NGR)

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

10

timeout value so that a new object is generated during that time for communication.
All these functions are called from user mode but executed in the kernel mode.

• So, CreateFileW function is again called to connect to a named pipe with the
format:“\\\\.\\pipe\\{Name.Buffer}”. If this is a success, then the target object is
accessed. If not, the code interacts with the object manger to get the address of L“\\
BaseNamedObjects\\” directory. It holds the references to objects such as mutexes,
events, semaphores, timers, and section objects. So for accessing the mutex used by
another bot in the system, it is accessed as “\\BaseNamedObjects__INFECTION__”.

• Now, the SetNamedPipeHandleState is called to set the mode (read, blocking)
using flag PIPE_READMODE_MESSAGE for the named pipe. i.e. to access the specific
objects in the process. The named pipe can be tested using ReadFile and WriteFile
functions to verify whether read or write operations can be executed or not.

• It is now possible for the PDEF+ component to access the mutex handle used by the
adversary. As the logic is implemented at the kernel mode with read/write operations
on the target mutex, the PDEF+ can easily kill the mutex and take control of the
system by deleting other malicious files by simply using DeleteFile function.

Fortunately, the researchers have leaked the source code used by SpyEye to kill Zeus
here [8]. The source code can be mapped easily with the discussion above.

5. CONCLUSION
In this paper, a concept of bot wars has been explored. Considered the state of present-
day botnets, these wars are unavoidable. The defenses are built by malware authors
inside the malicious binary to take control over the infected system by eradicating
other threats. A mutex based detection approach has been discussed to understand how
exactly mutex objects are screened and communicated using named pipes for read/write
operations. In the PDEF+ model, the malware author can also deploy other techniques
such as process monitoring, API checks, etc. to determine if another adversary is present
in the system. The bot wars prove that the malware authors are now aiming for complete
control without any compromise with the other threats on the system. At last, the bot
war is a game of complete control of the target system. ¶

References
1 On the Analysis of the Zeus Botnet Crimeware Toolkit, http://www.ncfta.ca/papers/

On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
2 Reversal and Analysis of Zeus and SpyEye Banking Trojans, http://www.ioactive.com/

pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf
3 Dissecting SpyEye – Understanding the design of third generation botnets, http://www.

sciencedirect.com/science/article/pii/S1389128612002666
4 The kernel object namespace and Win32, part 1, http://www.nynaeve.net/?p=61
5 The kernel object namespace and Win32, part 2, http://www.nynaeve.net/?p=86
6 Mutex Analysis: The Canary in the Coal Mine (and Discovering New Families of

Malware?, http://www.networkforensics.com/forensics-and-reverse-engineering-series/
mutex-analysis-the-canary-in-the-coal-mine-and-discovering-new-families-of-malware/

7 Dissecting NGR Bot Framework, http://secniche.org/released/VB_AKS_RB_RJE_NGR_
BOT.pdf

8 SpyEye Bot (Part two) - Conversations with the creator of crimeware, http://www.
malwareint.com/docs/spyeye-analysis-ii-en.pdf

9 WinObj Tool, http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx

W
ind

ow
s S

ec
ur

ity

HITB | ISSUE 009 | NOVEMBER 2012

12 13

W
ind

ow
s S

ec
ur

ity
W

indows Security

A
rguably, moving data within physical memory is the most frequently
performed operation on all commonly used system platforms running on
either Intel X86-32 or AMD64, including Microsoft Windows; it has been
shown to consume a significant percentage of the kernel execution time

[1]. Introducing numerous optimizations relying on the block size, relations between
source and destination virtual addresses or other factors seems reasonable and have
been in fact included in multiple implementations; for example, the source code of
the optimized memcpy routine1 in the latest glibc available at the time of this writing
takes 3138 lines, while the most naive implementation takes no more than two or
three lines of C code. Although the nature of such optimizations always complies
with the general rules set by the C / C++ specifications, they might expose some
unintuitive or otherwise interesting behavior, which in extreme cases might even be
taken advantage of during exploitation of software vulnerabilities. In this article, we
present how one such behavior - reverse direction of memory copying process - can
be used to facilitate successful local attacks against Windows kernel vulnerabilities.

OVERLAPPING MEMORY REGIONS
The memcpy and memmove functions have been both included in the C and C++
standard library specifications since the very early stages of the languages’
development (at least C89 and C++98, their first standardized specifications); the
initial versions of the routines’ descriptions can be found in the ANSI C standard
released in 1989, as shown in Listing 1.

As clearly shown, the only practical difference between the two functions is how they
handle the case of overlapping memory regions, e.g. when the following condition is
positive: src<dst<src+size. Specifying such region via memcpy arguments results
in undefined behavior and as such is a programming error, whereas memmove is
supposed to gracefully handle this corner case. As a result, memcpy is allowed to take

1 The implementation resides in the sysdeps/x86_64/multiarch/memcpy-ssse3.S file.

advantage of the design assumption and copy the bytes between buffers in whatever
order it chooses to; most often, it just copies data starting from the beginning of the
specified regions in units of 8, 16, 32 or more bits of size. In turn, memmove typically
seems to work in a similar way, only introducing one of the two commonly observed
variants of an if statement, both presented in Listing 2.

The latter expression is visibly a more general notation of the former - while consuming
less CPU cycles, it still ensures the validity of the performed memory operations.
The direction of iterating over a memory region doesn’t make any difference under
typical conditions when dst and src are both valid buffers of at least size bytes, but
what happens when something goes wrong? Let’s look into this in more detail in the
next section.

Memory Copy Functions
in Local Windows Kernel
Exploitation
Mateusz “j00ru” Jurczyk

Listing 1: Initial descriptions of the memcpy and memmove routines in C89

4.11.2.1 The memcpy function
Synopsis
#include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);

Description
The memcpy function copies n characters from the object pointed to
by s2 into the object pointed to by s1 . If copying takes place
between objects that overlap, the behavior is undefined.

Returns
The memcpy function returns the value of s1.

4.11.2.2 The memmove function
Synopsis
#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description
The memmove function copies n characters from the object pointed to
by s2 into the object pointed to by s1 . Copying takes place as if
the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the
objects pointed to by s1 and s2 , and then the n characters from the
temporary array are copied into the object pointed to by s1.

Returns
The memmove function returns the value of s1.

Listing 2: Commonly observed patterns in memmove implementations

1. long variant
if (src < dst && src + size > dst) {
 /* copy bytes backwards */
} else {
 /* copy bytes forward */
}

2. short variant
if (src < dst) {
 /* copy bytes backwards */
} else {
 /* copy bytes forward */
}

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

14 15

EXPLOITABILITY USEFULNESS
As an obvious fact, there are only two potential scenarios (or a combination of
those) in which the direction of filling out a specific memory region denoted by
{dst ..dst+size} could make a difference exploitability-wise; both of them rely on a
buffer overrun or out-of-bounds access taking place during the function call:

1. There is a race between completing the copying process and accessing some of
the bytes that have already been moved to the destination, such as a function
pointer being used in a call.

2. It is expected that the memcpy or memmove function doesn’t successfully
complete, i.e. the procedure runs into an invalid memory area while trying to
access an offset relative to either the dst or src buffers.

In practice, the first option could become realistic in the following, exemplary
arrangement: dst and src are two separate buffers of sizes 0x10000 and 0x1000000
allocated from the kernel pool and user-mode heap, respectively. While the
vulnerable device driver decides to entirely copy the src buffer into dst, the user
has made sure that all virtual pages in the range of (dst .. dst+0x1000000) are
mapped to physical memory through kernel pool spraying - therefore, no exception
would be generated due to invalid memory access. Additionally, some of the
allocations following dst include kernel pointers that once overwritten could be
used by user-land programs to execute arbitrary code with ring-0 privileges. Now,
overwriting sixteen megabytes of kernel pool memory would typically result in an
instant machine crash; however, if the memmove call is preempted by a user-mode
thread at some point, triggering the usage of a pointer stored within the already
overwritten area, it would be able to compromise the system sooner than it would
crash due to other drivers trying to use the malformed data. Image 1 illustrates the
discussed situation.

Although we could hope that such scenario would also be exploitable for the more
intuitive forward copying, using the opposite direction gives us a significant edge:
by manipulating dst + size to point to the address we desire to overwrite, it is filled
with arbitrary bytes sooner than legitimate allocations (and far sooner than it would
normally be), decreasing the chance of another module using malformed pool data
before the machine is compromised. This could especially make a big difference in
situations where size can be as large as 65kB or more, destroying important kernel
structures during the process.

A similar effect could be achieved with a non-continuous destination region if the
attacker was to make sure that he would be able to preempt thread execution and
reference the overwritten area sooner than the system inevitably crashes. For any
attack including a race condition one a single-cpu platform though, it is important that
the vulnerable code runs at IRQL equal to PASSIVE_LEVEL; otherwise, its execution
cannot be preempted by a user-mode thread, denying successful exploitation. On
hardware configurations with multiple cores or physical processors, winning the race
is really easy; for example, an attack carried out on a desktop PC with 4 cores was
proven to work reliably for the memmove size operand as small as 0x100.

The second scenario assumes that for whatever reason, there is at least one page
missing within the (dst .. dst+size) or (src ..src+size) region, thus the copying function
will eventually try to access it, generate an exception and most likely bring the
machine down. If one can control the size operand to a large extent (e.g. 20 - 31
least significant bits) and is able to make certain assumptions about the possible
virtual address of the dst buffer residence such as it being allocated in between an
exemplary 0xA8000000 - 0xB0000000 range, the condition may become a specific
form of a write-what-where situation. By carefully choosing or indirectly affecting
the dst and size operands, one could decide which memory area to overwrite first
before facing the Blue Screen of Death. If correctly carried out, the attack could
consist of overwriting one of the function pointers used while dispatching kernel-
mode exceptions (e.g. nt!KiDebugRoutine), and thus compromise the system at the
exact time of the copying function dereferencing an invalid address. This situation is
illustrated in Image 2.

From a practical standpoint, reversing the copying order is primarily seen as
beneficial because it makes it possible to corrupt specific regions of memory before
writing to locations directly after the overflown buffer, or even entirely preventing
it. Considering that these areas often contain important structures that shouldn’t
be tampered with - such as sensitive pool headers or stack cookies - we believe that
taking advantage of backward data copying could be used to circumvent certain
mitigation mechanisms. For instance, /GS stack cookie protection might be bypassed
in both a preemption scenario, where data outside of the stack is overwritten and
used first, as well as when the kernel exception handling execution flow is hijacked
by overwriting an important data structure or function pointer. In both cases, the
system would be hacked before it even got to the point of verifying the cookie value.
What also makes such attacks more feasible is the fact that kernel-mode thread

Image 1: Partial kernel pool overwrite subject to a race condition

Image 2: A write-what-where condition with a roughly estimated where operand during
memory copying

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

16 17

stack addresses are known to user-mode applications [3], allowing more precise
overwrites.

How realistic the attacks can be depends on numerous characteristics of a particular
vulnerability in consideration: the system architecture, driver’s compilation flags,
variant of memory function used, relations between its operands and more. The next
sections discuss which of the two range check variants presented above can be found
in each of memcpy and memmove functions in 32-bit and 64-bit operating systems,
and what prerequisites must be specifically met in order to provoke and make use of
the behavior during vulnerability exploitation.

AFFECTED CONFIGURATIONS
We verified how calling one of the two memory copying functions translates to
actual binary code in both third-party device drivers built for different system
architectures (X86 and AMD64) and with different optimization settings, as well as
the Windows kernel itself. To produce the executable images for testing, we used
the WDK 7699.16385.1 environment for compilation and Windows 8 Release Preview
for the actual kernel binaries. The results of the investigation are broken down in
Table 1. The different sets of built-time flags are as follows: /Od /Oi for completely
disabled optimization, /Oxs for full optimization and /Ot for speed-oriented
optimization (as per the MSC_OPTIMIZATION article [4]).

The meaning of each entry in the table is as follows: “not affected” denotes an
implementation that always copies forward, such as a simple inlined version of
memcpy making use of the rep movsd idiom with DF=0; this seems to be the case
for all invocations of memcpy within non-optimized drivers, as well as 32-bit drivers
with full optimization. The long variant term is used for the situation in which the
destination pointer must fall exactly into the source region identified by src and size;
we can see that it is used in both routines on a 32-bit kernel. Interestingly, these
routines are widely used all across the system since almost every device driver imports
the functions directly from the NT kernel (unless they use an inlined memcpy). Finally,
the short variant where only the dst pointer needs to be greater than src is observed
in memcpy and memmove in almost all 64-bit drivers, excluding non-optimized drivers
calling memcpy. Unlike 32-bit modules, none of the 64-bit ones actually import those
functions from the kernel; instead, they appear to have the very same implementation
statically linked and embedded in the executable image.

With this in mind, let’s see what the actual requirements are for the behavior to be
of any use in practical conditions.

REQUIREMENTS - LONG VARIANT ON INTEL X86
The long variant of the if statement makes it relatively hard to use backward copy
for one’s benefit. Assuming that the attacker desires to trigger a write-what-where
condition by carefully manipulating the size operand, we can consider two scenarios:
copying memory from user- to kernel-land (while handling an IOCTL signal or
otherwise interacting with a ring3 process) and between two kernel memory areas.
In both cases, the local attacker must be able to roughly predict the virtual address
of the buffer to overflow, a task that can be achieved using various undocumented
pool massaging techniques. Furthermore, since the destination must overlap with
the source region, the size parameter must not only be inadequate to dst, but also to
src; otherwise, the two areas would never overlap. Listing 3 makes a good example of
a vulnerable code which allows an attacker to trigger the desired code paths - since
the x variable is fully controlled and doesn’t relate to an actual region represented
by src, it can be manipulated in order to meet the src<dst<src+size condition.

Even with this, there are still some possible problems: if the src + size value
overflows, the condition is never met (implying that most kernel-mode regions
before dst can never be reached using this method). Likewise, if dst + size overflows,
the attacker doesn’t gain anything since the copying will eventually fail (at the latest
when attempting to access the 0xffffffff address). In general, assuming that addr is
the address to be overwritten with a memcpy or memmove, all of the following
expressions must be true:

src + size <0x100000000
dst + size <0x100000000
src < dst < src + size
dst + size >_ addr

the above also implies:

0x100000000 — dst > dst — src

REQUIREMENTS - SHORT VARIANT IN INTEL X86-64
Since the short variant only requires the destination buffer to be higher in the virtual
address space than the source, it is generally much easier to take advantage of.
Most of all, when copying data from the user-mode memory areas into the kernel,
the condition is always met, allowing the attacker to directly carry out a write

Listing 3: A flawed implementation of a METHOD_NEITHER IOCTL signal

__try {
 // x, y are user-controlled, thus can be crafted to cause an integer
 // overflow.
 ProbeForRead(input_buffer, x + y, sizeof(UCHAR));

 // an undersized buffer is allocated
 buffer = ExAllocatePool(PagedPool, x + y);

 // buffer overflow occurs with the "size" operand fully controlled
 memmove(buffer, input_buffer, x);
} except (EXCEPTION_EXECUTE_HANDLER) {
 return GetExceptionCode();
}

 memcpy, 32-bit memcpy, 64-bit memmove, 32-bit memmove, 64-bit

Drivers, no optimization not affected not affected long variant short variant
 (imported from nt) (statically linked)

Drivers, speed long variant short variant long variant short variant
optimization (imported from nt) (statically linked) (imported from nt) (statically linked)

Drivers, full optimization not affected short variant long variant short variant
 (statically linked) (imported from nt) (statically linked)

ntoskrnl.exe long variant short variant long variant short variant

Table 1: Specific memcpy and memmove implementations used by third-party drivers and
the Windows kernel itself

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

18 19

into controlled location by only manipulating the size operand (and trying to guess
the destination allocation address, unless it is an allocation with publicly-known
address, such as a kernel executive object). The check can also be satisfied for
kernel-to-kernel copy operations by spraying or massaging the pool in a specific
way. Since the two areas do not have to overlap anymore, many of the previous
restrictions are gone: size may or may not be adequate to src, the src + size value can
cause an integer overflow, etc. By carefully controlling size, an attacker can pull off
interesting attacks by pointing dst + size at various memory areas, including kernel-
mode stacks, subsequent pool allocations, writable sections within executable
images, or even CPU control structures such as GDT or IDT. It is also believed that
some classes of a “negative memcpy” conditions - typically extremely difficult to
exploit - could be made reliably exploitable by taking the order in which bytes are
copied into account.

Despite the observation being quite generic, the paper doesn’t feature any specific
exploitation scenarios - that’s because there’s a variety of ways in which memcpy or
memmove can be called erroneously by a vulnerable driver, each requiring a thorough
consideration in terms of what and how should be overwritten. Most of the realistic
scenarios appear to have at least one way to be reliably exploited using backwards
copy; the reader is encouraged to experiment and perform further research on the
subject on his own.

RANDOM NOTES
As an interesting fact, it is worth noting that Microsoft has introduced safe
versions of the discussed functions called memcpy_s [5] and memmove_s [6] in
the Windows kernel starting from Windows 7. Although they don’t address the
behavior exposed in this paper (which in fact can’t be helped, given that the real
vulnerability always lies outside of the copying function), they aim to mitigate
other classes of security issues, such as NULL pointer dereferences - by bailing
out if a NULL source or destination address is passed - or integer overflows - by
performing the multiplication of item count and item size instead of leaving it up
to the developer. Not only are these functions implemented and exported by the
kernel, they are actually used in the built-in drivers in Windows, see Listing 4. This
is just yet another thing to keep in mind during kernel vulnerability research, and
yet another path that Microsoft took to make it more difficult for bug hunters to
find and effectively exploit kernel bugs.

CONCLUSION
The article presented how a slightly non-intuitive behavior of a function frequently

used within kernel-mode can be employed to improve the reliability of an exploitation
process, or even convert certain conditions from non-exploitable to exploitable.
As the effort towards hardening the Windows kernel recently pulled by Microsoft
progresses, it is believed that such non-generic tricks that only work under certain
circumstances are going to become of more and more value in the near future. Let’s
see how it goes. ¶

W
ind

ow
s S

ec
ur

ity
W

indows Security

Listing 4: ndis!ndisAddWoLMagicPacket using a hardened version of memcpy

.text:000000000002EE03 mov r8, cs:off_85FC8 ; void *

.text:000000000002EE0 Amov edi, 0C4h

.text:000000000002EE0 Flea edx, [rdi-44h] ; size_t

.text:000000000002EE12 lea rcx, [rbp+110h+var_DE] ; void *

.text:000000000002EE16 mov r9d, eax ; size_t

.text:000000000002EE19 mov [rbp+110h+var_F0], 0C40180h

.text:000000000002EE20 mov [rbp+110h+var_E4], 2

.text:000000000002EE27 mov [rbp+110h+var_E0], ax

.text:000000000002EE2B call cs:__imp_memcpy_s

References
1 Michael Calhoun, Scott Rixner, Alan L. Cox: Optimizing Kernel Block Memory

Operations. http://www.cs.rice.edu/CS/Architecture/docs/calhoun-wmpi06.pdf
2 Microsoft: ProbeForRead routine. http://msdn.microsoft.com/en-us/library/windows/

hardware/ff559876%28v=vs.85%29.aspx
3 Mateusz Jurczyk: Windows Security Hardening Through Kernel Address Protection.

http://j00ru.vexillium.org/blog/04_12_11/Windows_Kernel_Address_Protection.pdf
4 Microsoft: MSC_OPTIMIZATION. http://msdn.microsoft.com/en-us/subscriptions/

ff549305%28v=vs.85%29.aspx
5 MSDN: memcpy_s, wmemcpy_s. http://msdn.microsoft.com/en-us/library/

wes2t00f%28v=vs.80%29.aspx
6 MSDN: memmove_s, wmemmove_s. http://msdn.microsoft.com/en-US/library/

e2851we8%28v=vs.80%29

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

20 21

M
ob

ile
 Se

cu
rit

y
M

obile Security

T
he threat that our industry has convinced business to be most of afraid of
this year — yes the one that starts with an ‘A’ and ends with a ‘PT’ — can
be regarded as multi staged. The attacker first assesses the network, then
exploits the network, then attempts to maintain a presence in the network

while pivoting and spreading throughout. There are many points at which an attacker
can be slowed, stopped or detected, but the devices, applications and techniques
used by those defending the network can conceptually be broken down into two
parts: the network and the end-point.

An advanced persistent threat (APT) by definition describes a group with the ability
and intent to effectively and persistently attack a target with frequent success.
The concept of persistent threats on mobile devices is still very new and barely
documented, if at all. During the course of this article I will introduce the attack,
penetration and finally focus on persisting access to a device, even across factory
resets of the target device OS (Android).

Why compromise and maintain access to a mobile phone?
• Ability to monitor communications of the device user.
• Access personal data on the phone. Mobile devices of today have as much if not

more sensitive personal data than our desktop systems do.
• Typically, mobile devices remain on at all times in transit. During a suspend

operation, the LCD, accelerometer and other user interaction features will be
disabled, however network access features including Wi-Fi are not disabled.

• Mobile device users frequently traverse sensitive environments. For example,
compromising a desktop or server system in an internal corporate network is much
more of a challenge than compromising a mobile device that will slowly make its
way, throughout the day, to that same physical location, deep within a company.
At these depths open wireless, or less secured access points are more common. A
mobile device can get into the NOC on the 70th floor of a corporate building much
easier than your average attacker.

THE ATTACK
How are mobile devices attacked?
Attack methodology as it applies to mobile devices, differs from the methods used
to compromise desktop computer targets. Attackers targeting corporate networks
often work their way from the outside in, exploiting trivial web site vulnerabilities or
email spear phishing employees, capturing credentials, shifting towards credential
management machines, for example a domain controller, or a cryptographic key
distribution system. From this point an attacker can often access any machine he or
she chooses.

Mobile APT attack methodology works almost in complete opposite. Once a device
is compromised it is already, or soon will be in the network location the attacker
desires. All the coffee shops, print shops, and client conference room wireless
networks along the way are an added bonus to this information rich penetration.

By far the most common method is to trick the user into downloading a malicious
app from an app provider (marketplace/store). Many of the readers may be familiar
with the malware issues affecting Android. Attackers simply modify and repurpose
trending apps (Angry Birds, Spiderman, etc.). They make modifications to the code
to include malicious components such as exploits to jailbreak the phone, steal data,
or further propagate. Then they upload these apps again under alternative developer
ID(s), false pretenses that, at this time are not validated on app marketplaces.

An attacker could just as easily target mobile email and offer apps via email that
contain malicious content. This might raise a few alarms but as long as the app being
advertised looks benign under close monitoring, the threat would be dismissed as
common spam.

Remember, an attacker can publish an app that looks benign for now, however after
some lapsed time, the app will have a good standing at which time a malicious piece
of code could be slipped in during normal lifecycle of app updates. There are variety
of other ways that an attacker can get the malicious code to run on your device,
including drive by attacks, browser, Bluetooth and NFC exploits, but if we’ve learned
anything about traditional advanced persistent threats we know that they usually
start as a personal attack, often using meticulous social engineering techniques.

PENETRATING ANDROID SECURITY
Once an app has been installed on an Android device, the app will need to break out
of the security sandbox before it can rootkit a device or perform tasks not previously
authorized by the user during the app install.

Unfortunately for a normal user, Android OS patch management leaves something
to be desired for. For the purposes of this research, I purchased an AT&T LG Thrive
for a little over $100 USD from my local Radio Shack. I’ve had it in my possession
for testing purposes for approximately six months. When I checked for a software
update (moments ago), no update was available. It’s running Android 2.2.2 with a
2.6.32.9 kernel. The jailbreak exploit packaged in the app Gingerbreak.apk still
works to root this device.

Android
Persistent Threats
Riley Hassell, CEO of Privateer Labs (A C5i Company)

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

22 23

Furthermore the team at OpenSignalMaps.com has demonstrated that over 75% of
Android users as of April 2012 are operating versions of Android 2.2-2.3.3. Android
2.3.3 is also vulnerable to the vulnerability exploited by GingerBreak.

PATCH MANAGEMENT PITFALLS
The Android OS sandbox is designed to prevent apps from operating outside of the
sandbox. This is the whole purpose of a sandbox design. For an app to escape the
sandbox it must exploit a weakness in the Android OS or in the manufacturer provided
software applied to the device. If a system is at the most current patch level the,
“known” weaknesses available to exploit are limited.

Unfortunately I can’t simply recommend that you update your device software to the
most current version. As I mentioned earlier in this article the device I’ve performed
my testing on is using an older and highly vulnerable version of Android and the
manufacturer has yet to publish an update down to the device.

The device manufacturers are responsible for distributing security fixes.
Unfortunately the Android ecosystem is so fragmented you could be waiting six
months for a fix, or never receive one at all if the manufacturer doesn’t deem it
necessary (the case of the AT&T Thrive). With over four thousand different Android
devices on the market, device fragmentation is a serious problem.

Google’s Android team documents this responsibility in a security F.A.Q:
“The manufacturer of each device is responsible for distributing software upgrades
for it, including security fixes. Many devices will update themselves automatically
with software downloaded ‘over the air’, while some devices require the user to
upgrade them manually.

Google provides software updates for a number of Android devices, including the
Nexus series of devices, using an ‘over the air’ (OTA) update. These updates may

include security fixes as well as new features.”

-http://developer.android.com/guide/faq/security.html#fixes

One important point that should be made is that the Nexus series of devices,Google
directly provides updates over the air (OTA). One could theorize that Nexus users are
more likely to receive timely updates due to the much shorter supply chain.

PERSISTING ACCESS ON ANDROID DEVICES
So now we have an idea how to get a malicious app onto an Android phone and we
know that in most cases a handful of prepackaged jailbreak exploits will do the job
of getting root access on the device due to patch management issues. Our next order
is to come up with a way to maintain access to the device.

The Android Sandbox that prevents apps from accessing sensitive resources, and
provides a degree of protection to users from malicious apps, acts as a double edge
sword to security pioneers, preventing their apps from accessing the sensitive
resources that need to be scanned or analyzed on a mobile device. The same sensitive
resources that are modified by malicious apps that do jailbreak out of the sandbox
are out of our reach.

In other words, if a malicious app jailbreaks (i.e. gains root access) a device and
modifies sensitive areas of the device that are only accessible to high level users
(outside of the sandbox), security apps cannot access these areas, unless we
ourselves jailbreak (gain root privileges). Another option is to support jailbroken
phones and offer superuser scanning.

One of, if not the most publicized Android malware examples DroidDream, does just
this. Lookout, a mobile security vendor published an in depth review of DroidDream.
I’ve included a small excerpt from this review below:

“Once the second stage payload is delivered and installed by the primary infector,
it sits and waits silently to be activated. There is no icon on the application tray,
and it cannot be found by other user-managed applications on the file system
since it is installed on the/system partition.”

-http://blog.mylookout.com/droiddream/

I think that while having the app be stealth is a benefit, the primary reason for
copying the app to the/system/app directory is persistence. By installing itself onto
the system partition, it protects itself from removal and will even survive factory
resets. Users on the forums at AndroidCentral.com also noticed this and provided the
following comments:

“How do I remove DroidDream from my device?
Because DroidDream leaves a backdoor on the user’s device, simply deleting the
malicious app is not believed to clean the infection or prevent future problems.
Also, because DroidDream has superuser rights on the phone, the infection could
survive a wipe using a custom recovery. Only a complete factory reset to stock

M
ob

ile
 Se

cu
rit

y
M

obile Security

FIGURE 1: Android Device Fragmentation (OpenSignalMaps.com)

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

24 25

using a manufacturer-provided image or utility is currently considered satisfactory
to remove all traces of DroidDream.”

-http://forums.androidcentral.com/android-news/64912-droiddream-
official-discussion-thread.html

ANDROID FILE SYSTEM BASICS
Android is based on Linux and therefore supports many popular file system formats.
Since the focus of this article is on mobile phone devices, we’ll discuss the common
file system layouts associated with Android devices that use a NAND Flash. Devices
that mount data from a NAND Flash storage device will do so using the YAFFS or
YAFFS2 (Yet Another Flash File system).

/data

The user data that is stored as a separate partition in mtdblocks is mounted at
boot time with read-write access. This partition contains all the user centric data
including user apps located at /data/app, and user app data, located at /data/data.

/system

This is the main system partition. Stored as a separate partition in mtdblocks
and mounted at boot time as read-only. This partition contains the manufacturer
framework code, system configuration, and also system apps at /system/app. The
apps stored in this directory include the bloatware apps prepackaged with your
device. For those of you unfamiliar with the term “bloatware” this term is designated
for all the third party apps pushed to a device that are not required for operation and
often take up precious RAM and disk space.

/sdcard

The removable sdcard is mounted here. Often a VFAT file system.

ANDROID FACTORY RESET
An Android user can choose to perform a factory
reset through Settings->Privacy->Factory Reset.

When a factory reset is performed the user data
partition (/data) is formatted and all data in this
partition is lost and restored to its factory state.
Many Android users are unaware of the fact that
a factory reset does not format and restore other
sensitive partitions, such as the system partition
(/system) to their factory state. For this reason a
malicious app in the /system/app directory may
not be deleted across factory resets. Furthermore
any changes to other sensitive applications and
configuration in this partition will also persist across
factory resets.

PERSISTING REMORA
For the purpose of testing Privateer Labs designed a persistent app, nicknamed Remora
to demonstrate some of the issues discussed in this article. A remora is a type of fish
that attaches to other aquatic organisms to form a communalism based relationship.

We can install Remora on a device the
same way we would install any other
Android app. In this specific case,
and due to the dangerous nature of
Remora, the app is not available on
any public marketplace so this avenue
of installation is not available. I installed Remora through an ADB USB connection
from my desktop computer by issuing the following command:

adb install Remora.apk

Once the app has been installed. We then open up a shell, again using the ADB USB
connection with the command:

adb shell

Once the shell has opened I’ll need root access before continuing. I chose to use
rageagainsthecage exploit since it is the same exploit used by DroidDream:

sh-3.2$./rageagainstthecage
[*] CVE-2010-EASY Android local root exploit (C) 2010 by 743C
[*] checking NPROC limit ...
[+] RLIMIT_NPROC={3339, 3339}
[*] Searching for adb ...
[+] Found adb as PID 10416
[*] Spawning children. Dont type anything and wait for reset!
[*]
[*] If you like what we are doing you can send us PayPal money to
[*] 7-4-3-C@web.de so we can compensate time, effort and HW costs.
[*] If you are a company and feel like you profit from our work,
[*] we also accept donations > 1000 USD!
[*]
[*] adb connection will be reset. restart adb server on desktop and re-login.
sh-3.2$
C:\Android Exploits>adb shell
sh-3.2#

I remounted the /system partition with read-write privileges and copied Remora to
the system app directory by issuing the following commands:

sh-3.2# mount -o remount,rw -t yaffs2 /dev/block/mtdblock3 /system
mount -o remount,rw -t yaffs2 /dev/block/mtdblock3 /system
sh-3.2# cat com.remora.apk > /system/app/Remora.apk
cat com.remora.apk > /system/app/Remora.apk

M
ob

ile
 Se

cu
rit

y
M

obile Security

FIGURE 2: Android Factory
Reset

FIGURE 3: Remora Fish

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

26 27

MOBILE SECURITY APPS
I mentioned that security apps have a difficult time or in many cases simply fail to
remove existing system level malware infections from a device. That being said
the malware should not break out of the sandbox in the first place if the system is
properly patched and mobile Antivirus solutions do a good job of preventing a wide
variety of malicious apps from being installed on the device in the first place. For
example, the malware example discussed during this article DroidDream is detected
by most Android Antivirus apps. If you don’t already have a mobile Antivirus app
on your Android we recommend you install one. Many are free of cost and are also
advertisement free.

ON-DEMAND VS. ALWAYS ON
Change you mobile use habits to on demand rather than always on. To elaborate
more, most of us leave our WiFi, Bluetooth, and other edge services on all the time.
Many apps from both device vendors and marketplace vendors expose sensitive data
over the network by not using proper encryption (SSL). If you plan on sitting in a
coffee shop for a few hours with friends turn off your WiFi. When you need network
access turn it on, when you’re done turn it off. ¶

sh-3.2# ls -l /system/app/Remora.apk
ls -l /system/app/Remora.apk
-rw-r--r-- root root 1290464 2012-08-25 13:28 Remora.apk
sh-3.2#

At this point we can remove Remora from the user app directory.

Remora does the following:
• Deploys itself into the SYSTEM app directory
• Deploys with a wide variety of Android permissions to allow rich control over the

device if required.
• Does not expose a launcher icon and therefore is not visible on the program

launcher.
• Is an event driven application. Only operating as events of interest are received such

as carefully crafted SMS messages. Once the task is completed the instance exits.

Commands are sent to remora over SMS. Messages containing commands are
processed and removed from the SMS queue so that they are not visible to other apps
or the device user.

If the mobile device user performs a factory reset the /data partition will be
destroyed but the /system will be left more or less intact as mentioned previously.
Upon reset and first boot the app will be added to the packages list:

<package name=“com.remora” version=“1” ts=“1345926519000” flags=“1”
codePath=“/system/app/Remora.apk” userId=“10005”> <sigs count=“1”>
<cert key=“key_here” index=“6”/> </sigs> </package>

I’m purposely leaving out a few details here on how to maintain root or “system”
access factory resets. Secondly I’m not disclosing details on how to auto register
receivers or system services across resets. These are left as exercises for the reader.
If you’d like to pursue these avenues for educational purposes check out Superuser.
apk. It has the ability to maintain superuser access even after a factory reset.

WHEN IN DOUBT REPLACE DEVICE OR REIMAGE
I spoke with a T-Mobile US representative that mentioned to me that many device
manufacturers have a 1 year manufacturer warranty that covers malware infection.
Consider requesting a new device although this may involve you mailing in your
device to a service center.

If you prefer to try it out yourself I would recommend reimaging your device with
updated vendor firmware. Clockworkmod’s recovery image offers the ability to wipe
your/system partition and install a new system image from the SD Card. Keep in mind
that tracking down firmware, especially from a trustworthy source is a challenge on
its own.

UPDATE IF POSSIBLE
Update your Android OS as soon as device updates are available. You can update your
device on most Android versions in Settings->About phone->System Update.

M
ob

ile
 Se

cu
rit

y
M

obile Security

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

Yann Allain & Julien Moinard

A practical approach of Power Analysis
dedicated to Reverse Engineering

Does the Analysis
of Electrical Current

Consumption of
Embedded Systems

Could Lead to
Code Reversing?

28 29HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

As we can see, the specific techniques
to find an encryption key are widely
published and accessible.

For instance, below is an extract of a
publication which aims at showing the
relation between a trace of the power
consumption of a crypto processor and
the execution of a DES algorithm.

Our bibliographical research (see details
at the end of the document), which is
certainly not exhaustive, seems to show
that there are far fewer publications
on the use of techniques of analysis of
power consumption (power analysis) for
reverse engineering.

However, we have “spotted” three
interesting documents linked to our
specific topic:

• The following article deals exclusively

with the identification of instructions
managed by a PIC (a well-known
microcontroller): (Thomas Eisenbarth,
http://math.fau.edu/~eisenbarth/
pdf/SideChannelDisassembler.pdf)

• The following document underlines the
uses of electricity analysis techniques
to do some reverse engineering, but
without revealing too many details.
Furthermore, the aim is the discovery
of information on the encryption
keys: (Valette, http://www.ssi.gouv.
fr/archive/fr/sciences/fichiers/lcr/
dalemuva05.pdf)

• And finally, an example adapted
to JAVACARDS technology:
(Vermoen, http://ce.et.tudelft.nl/
publicationfiles/1162_634_thesis_
Dennis.pdf)

Most of these publications are full of
mathematical formulae, which are more
or less complex (from our point of view!)

E.g.: Inference of the secret by current
analysis by correlation (!)

Finally, the analysis of experiments/
documents existing on this subject
highlights certain “shortcuts”. These
shortcuts, that we could also call
“experimental choices”, do not
question the conclusions presented
by the authors. But they can have an
impact on the achievability in “real life”
during a security audit; for instance, we
have noted:

• A decrease in the frequency used by

the microcontrollers. This action is
impossible (or quiet difficult) with no
physical access to internals parts of
the embedded system – so why boring
with a highly difficult power analysis if
they can “dump” the memory from the
EPROM they have access to

• Elimination of the decoupling
capacitors on electronic circuits
(impossible if there is no physical
access to the electronic components)

• Reduction of the analysis only to minor
the length of keys or restrict the
analysis to some and few instructions

What we think of this quick
bibliographical analysis?
Point 1: The aim of the community of

Introduction
The analysis of electrical consumption
for a given system can be the cause
of critical information leaks. Anglo
Saxon terminology generally uses the
expression: “Side Channel Attacks.”

This sort of analysis is most often
used to “find” keys in the encryption/
decryption systems (Crypto processors,
Smartcards…). There are a variety of
methods to extract these codes: Simple
Power Analysis (SPA), differential Power
Analysis (DPA)…

The purpose of our experiment was to
extrapolate on these methods in an
attempt to find the code and the data
executed by an embedded system and not
just the algorithms or the encrypting keys.

Origin of the phenomenon
The technology used in microcontrollers/
microprocessors is based on component
units: The transistors; often in CMOS
technology. These component units are
grouped into logical functions. These
logical functions deal with data and
instructions. The treatment, implying
the execution of an instruction or data
manipulation, impacts the electricity
consumption during transitions (passage
from binary value 0 to binary value 1).
As a consequence, current peaks are
created. See illustration below:

The consumption of an embedded system
is therefore theoretically proportional to
the number of bit transitions which will

go from 1 to 0 or from 0 to 1 when code
or data are processed. This phenomenon
can be applied to data as well as to
instructions which are also coded as bits.

What is the interest of this
experiment and why should we
do this?
• Why not…
• To have an alternative from classical

(and henceforth boring) XSS and SQL
Injections attacks…

• It is not always possible to “open” a
system to do audits: The clients can
refuse the opening of an electronic
system during an audit

• Anti-opening protections (Physical
Tamper Resistance devices) are
implemented and can have, as a
consequence, the destruction of the
program and of the data (Cf. payment
terminals and CryptoSystems…)

• The physical accesses to codes can be
protected by encryption systems which
prevent (or slow?) the classical reverse
engineering analyses (code extraction
in EPROM or Flash memory…)

• The debugging hardware interfaces
can often be suppressed from the
systems when they are placed on the
market. (no more JTAG access…)

• For fun…measure a current = read the
code!

(Rapid!) Analysis of the pre-
existing works on this topic
A large amount of research
(“Whitepapers”) and documents on
attacks aiming at finding encryption
keys: 3,780,000 answers in Google for
only one type of attack!

Source: Oswald, http://www.cs.bris.ac.uk/Research/
Seminars/departmental/2007-03-29_DeptSeminar_
Elisabeth_Oswald.pdf

Source: Microchip, http://ww1.microchip.com/downloads/
en/DeviceDoc/39631E.pdf

Source: Clavier, http://www.prism.uvsq.fr/fileadmin/
CRYPTO/these-cc-s.pdf

Source: http://www.prism.uvsq.fr/fileadmin/CRYPTO/these-
cc-s.pdf

30 31HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

researchers therefore seems to be
more centered on encryption issues (>
3 Million links vs. around 10 on Google
for the aspects of reverse engineering1).
The use of these techniques to extract
the code seems to be a secondary issue
in the authors’ minds…

Point 2: Can we achieve any of this
without having a 12-year doctorate in
mathematics? Is there space for a more
experimental approach?

Point 3: Is it really possible to extract
the executed code from an embedded
system via the analysis of the power
consumption?

Presentation of our study
Reminder of the targets. Our goal is to
validate the possibility (or lack of one) of
doing code reverse engineering through
the analysis of the current consumption
of an embedded system.

First, we need to find a way to acquire
the electric signals

The acquisition process for
electric signals (current, voltage)
Generally, the acquisition process for
this type of analysis is the following box:

A simple resistance2 “before” the
embedded system makes this measure

1 If we consider that the indexation obtained via search
engines such as Google is representative… or not.

2 See http://en.wikipedia.org/wiki/Electrical_resistance
for more details on what is a “resistance”

possible. But be careful, this resistance
must be placed between the 0v and the
embedded system’s ground input! (If
not, there is a risk of creating a short-
circuit as soon as the measuring device
is plugged in: another mass is created)

Another possible choice is to use a
differential sensor (more costly and
more complex to implement) to note
the difference in voltage across the
resistance.

The working principle of the
measure
The oscilloscope measures, and enables
us to see the voltage between the
resistance’s fuse holders. The voltage
is directly proportional to the current
used according to Ohm’s law: V (the
voltage = R (resistance value in Ohms) x
I (the value of the current in amperes).3

Our first measurements show that
the variations of these currents are
extremely low and that is why we choose
a resistance of 50 ohms to “amplify” the
phenomenon (U= 50 X I)

Some of the notions of
measurement which influence the
choice of measurement devices
According to Ohm’s law we know that
for a 1mA current we will have 50mV
(via our 50 ohm resistance). So the
voltage we have to measure remains low
compared to the power supply orders for

3 For more rigour, if the current varies the ohm law is
written: U(t) = R * i(t) All measures become a function of
time. R remains constant it is unnecessary to note the (t).

the embedded systems: A digital electric
circuit is generally supplied in 3.3V and
5V -> our variations will therefore be
around 1% of the general supply…

According to our first experiments,
there is a voltage DC component which
is “added” to the measured current. It
actually reveals the average consumption
of the prototype we used (PIC in our case).

We are looking for variations around
this value; we must not over-amplify
the measurement (cf. the value of the
resistance) as we will also increase this
average voltage. The consequence of
this increase would be to bring our signal
beyond the range of input voltages that
the oscilloscope can measure, and we
would have a distorted signal.

When we launch a program in the
embedded system, the current
variations are around 0.1mA (or more or
less 5mV4 to 10mV to be measured).

How do we choose an oscilloscope
adapted to this type of experiment?
To take this measurement, we are going
to use a digital oscilloscope. The digital
conversions require a sampling of the
data. The choice of the oscilloscope will
depend on the speed of the system, as it
transforms (by conversion) an analogical
signal (Voltage) into a digital value
measured in 8, 16, 32 bits.

This digital value can be used for:
• Setting up displays (curbs, Traces…)
• Calculating (averages, maximum/

minimum values…)
• And much more (Fourier

transformations…)

4 1 mv = 0.001 Volt

Be careful with the sampling speeds!

The sampling principles of an analogical
signal for it to be converted to a digital
signal need to follow Shannon’s law:

“To avoid a signal being disturbed by
the sampling, the sampling frequency
should be superior to the double of
the highest frequency contained in the
signal.”(http://fr.wikipedia.org/wiki/
Th%C3%A9or%C3%A8me_de_Shannon)

To summarize, if we choose an
oscilloscope that does not take enough
samples per second (= number of analogic
to digital conversions per second), there
is a loss of crucial information.

Within the framework of our experiment,
this can impact:

• The quality of the measures, and
therefore our capacity to spot
electrical transitions (or not).

• The “repeatability” of the
measurements (coherence of the
measures between two trials).

In other terms, the oscilloscope never
displays the same thing since it never
sees (in fact it does not always measure)
the same phenomenon (the transition is
too fast and lacks synchronization).

After some unsuccessful attempts with
cheap oscilloscopes (<€450, USB type…)
which were not adapted to our needs,
we chose to buy an oscilloscope from
Agilent Technologies: More precisely,

Source: http://en.wikipedia.org/wiki/File:Analog_digital_
series.svg

Source: http://en.wikipedia.org/wiki/Ohm's_law

32 33HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Picture “freely adapted” from https://commons.wikimedia.
org/wiki/File:Differential_power_analysis.svg

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

the model DSO3024A with a 2Gs/sec
or 4Gs/sec sampling according to the
model (around €4,000!).

Our experimentation
system designed to create
a “disassembler based only
on the analysis of current
consumption”

A bit of hardware!
Our tests use a “home-made” embedded
system. It is based on a PIC18F4620
type microcontroller (Microchip). The
embedded system’s function was to
make the LED flash and to control the
inputs/outputs. However, the use of the
embedded system does not impact our
experimentation.

List of components:
• Dso3024a Oscilloscope from AGILENT

TECHNOLOGIE,
• A Windows 7 operated computer,
• A simple embedded system based on a

MICROCHIP (PIC) microcontroller,
• A REAL ICE Programmer/Debugger,
• We use the internal 1 MHz clock from

the PIC,
• Laboratory electricity supply
• Some discrete components

(resistance…),
• Test holed attachment plate

(Breadboard)
• Various wires and other electronics stuffs

In reality this is what it looks like:

Principles of signal acquisition
Stage 1: The REAL ICE programmer
enables the upload of a program in the
embedded system (in the PIC). It is used
to send a code that we control to the
embedded system.

Stage 2: The execution of the program is
launched on the embedded system (Run).

Stage 3: During the execution, the
code should cause a variation of the
electricity consumption according
to the instructions which have been
executed and the data already treated.
The resistance ‘transforms’ the used
current into Voltage.

Stage 4: This voltage is “Representative”
of the consumption of the embedded
system during the execution of a
program. The oscilloscope’s sensors
recuperate this voltage

Stage 5: The computer pilots the
oscilloscope to start the measurements
and recuperate the data (the digital
conversion of the voltage by the
resistance’s fuse holders) -> [V(t),V(t1)…
,V(tn)]

Stage 6: A program on the computer
gathers a number of voltage
measurements. The same program
calculates the differences between
these voltage measurements and
displays them as a graph.

Note: All these measurements are
“synchronized" with the embedded
system clocks (cf. synchronization
signal on the previous photo).

A little software too!
To take our measurements, we have
developed a piece of software in VB.net
which pilots the oscilloscope in order to:

• Acquire the averaged measurement of
current.

• Differentiate 2 measurements of current.
• Display the measurement curbs.

GUI Screenshot

Zoom on specific parts of the GUI

Several functions in Menu
“Find an Instruction”, “Make a

differential power analysis”, “See and
create dictionary”

Main Action Button for the user:
“Find instructions” (the disassembler
like function), “Show graphical trace of
current consumption associated”

Below, here is the “result window” of
“disassembling”. It contains all type
of instructions and data that could
correspond to current consumption
acquired

Our results

What we are going to do?
Reminder of our target: show
the correlations between power
consumption and the executed
instructions and data processed.

To begin, we are going to highlight the
relation between current consumption
and executed instructions.

Then we will show that the way
the instructions are decoded by a

34 35HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

microcontroller and how this impacts on
the electricity consumption (because of
the decoding pipeline).

Finally, we will demonstrate the effect of
the bit values for data or instructions on
consumption. Our purpose here will be to
mention the notion of Hamming weight
(Representation model of the electricity
consumption according to bit value)

How we succeed to reduce
parasites?
This type of low amplitude current
measurement implies a large amount
of parasites to be dealt with, and which
can distort the measures (see below)

The solution to limit the impact of the
latter is to calculate averages to prevent
the imprecision of the measurement.

We have two possible choices:
• 1st choice: take frequent

measurements and calculate the
average thanks to the computer.

• 2nd choice: have this done by the
oscilloscope itself.

Our choice was to leave these
calculations to the oscilloscope,
since for our 1st tests the recording
capacities of our devices are sufficient.
We are going to attempt to find 2 or 3
instructions only (so around ten clock
cycle).

So our program just has to go round
in loops to have a periodic current
consumption.

How to make those loops?
• Trigger a reset on the embedded system

regularly (Power off, Power on).

• Make a test assembly programs that use
a loop (to repeat the same instructions
cycle).

• For our experiments, we chose the last
solution (easier to manage).

• The oscilloscope has thus been set
to calculate an average on 8000
measures.

All the current curbs that you will see
will therefore be averages. This enables
us to have results that are easy to
reproduce and relatively precise (with
few parasites)

Measurement 1: Analysis of a
program with NOP instructions
For this measure, we download a program
in the Microcontroller. It contains:
• 4 nop instructions. The nop instruction

corresponds to an assembler’s
instruction which does not do any
operation (no operation)

• 2 assembler instructions commanding
one of the microcontroller outputs.
These two instructions control the
value of one microcontroller’s pin.
They enable the positioning of its
value to 1 or to 0. It is a question
of the creation of a synchronization
signal enabling us to know when
the 4 nop instructions have been
executed. This signal is sent toward
the synchronization inputs on the
oscilloscope.

Program 1
nop
nop
nop
nop
+
Synchronization instructions

This program is executed in loops on
our embedded system. Here is the trace
that we get on one loop.

• In red, we measure the used current
during the execution.

• In Blue, we have our synchronization
signal (which goes to zero to the end
of the graph)

• In Green, we visualize the clock of the
embedded system

The graph below corresponds to the
execution time of our 4 instructions nop
+ 2 instructions for synchronization.

This graph is visualized on our

oscilloscope or inside our specific GUI.
If we make a zoom

Conclusion 1:
We can find instructions
and codes inside a current
consumption trace with a
practical approach
The above trace reveals an obvious and
repetitive link (the peaks are in red)
between the execution of the code and
the electricity consumption. The shape
and the periodicity in the consumption
time shows that the instructions

executed at the moment of each tick of
the clock (timing).

So it is possible to find a correlation
between the execution of a code in the
embedded system and the electricity
consumption by a simple and practical
approach.

We can see that we can detect where
the instructions are just by analyzing the
shape of the trace of the used current. But
we are still not able, for now, to translate
this trace into instructions (the value
corresponding to the measured trace)

Measure 2:
Influences of the Pipeline
for reversing instructions
and its drawbacks for our
measurements
Technical note on what a pipeline is:

Most of microcontrollers use a pipeline.
According to the Wikipedia definition, a
pipeline is “one of the elements of an
electronic circuit in which data advance
one after the other to the rhythm of the
clock signals. In the microarchitecture
of a microprocessor, it is more precisely
the element in which the instruction
execution is divided into stage”.

The purpose of the pipeline is (still
according to Wikipedia): “…a concept
inspired by the functioning of an
assembly line. Let’s consider that the
assembly of a car is composed of three
stages: installing the engine - installing
the bonnet - fixing the tires (in this
order, with maybe intermediary stages).

A car on this assembly line can only be in
one position at any given time. Once the
engine is installed, the car Y continues for
the bonnet to be installed, leaving the
“engine” position available for a car X.

The car Z is having the tires fixed

36 37HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

(Wheels) whilst the second car (Y) is at
the bonnet stage. Simultaneously, the
car X is starting the engine phase.

If the installation of the engine, the
bonnet and the wheels take - respectively
– 20, 5 and 10 minutes, the completion
of three cars will take (if they follow
one another on the assembly line) 105
minutes (1h45)=(20+5+10)x3=105. If we
place a car on the assembly line as soon
as the level where the car should be is
free (pipelining principle), the total
time to make the three cars will be of
75 minutes (1h15)…”

The purpose of the pipeline is therefore
to allow a quicker execution of the
instructions within a microcontroller
or a microprocessor. (See illustration
below)

Let’s return to our experiment.

Within the framework of this new
measurement, we are going to make
the difference in current consumption
between a program which executes 4
nop instructions (cf. measure 1 of the
previous chapter) and a new program
containing other instructions. For
instance, a movlw 0x00 :

Program 2
nop
movlw 0x00
nop
nop
+

Synchronization instructions
This measure aims to find the difference
between the electricity consumption
for the program 1 (nop only) and the
electricity consumption for the program
2 (nop + one mov intruction).

It is calculated by the program which
pilots the oscilloscope. The two
measures of the oscilloscope come in
two charts, we memorize the values and
then the program makes the different
between each point.

Below, we show the trace corresponding
to the difference in consumption
between the programs 1 and 2:

In red trace above, the 2 circled
small current’s peaks represent the
consumption which is theoretically
proportional to the number of bits
transitions which are going from 1 to 0 or
from 0 to 1 : in our case, it’s correspond
to the number of bits of nop and a
movlw instructions.

Let’s zoom in this trace,

C1, C2…, C8: represents the steps for
decoding an instruction on a PIC: An
instruction is executed every four clock
cycles on this type of microcontroller.
Each cycle corresponds to specific

decoding step (this is the pipeline!).
In comparison to the program 2 (nop,
movlw 0x00, nop, nop), this is how
the instructions are dealt with on the
pipeline.

Reminder: the consumption is
theoretically proportional to the
number of transitions of the bits which
will move from 1 to 0 or from 0 to 1 (cf.
chapter “origin of the phenomenon”)

In our situation, the transitions are the
following

Nop instruction binary encoding is
 0000 0000 0000 0000
movlw 0x00 instruction is
 0000 1110 0000 0000
So, I we make a zoom on peaks on latter
graph, we have

Analysis of the above trace, and
highlighting of the influence of the
pipeline on consumption

• In C4 we write the result of the
operation in the work register, but
the microcontroller does not actually
execute anything, as the nop does not
have a result.

• We can observe an electricity peak

in the 4th cycle. However, the nop
instruction does not write in any
register, so why do we have a power
peak?

• In a first analysis (without taking into
account the way the pipeline works),
we should have had it in C5 if we had
had four instructions per cycle. It
is the principle of the functioning of
the microcontroller’s Pipeline which
is already looking for the following
instruction in the ROM to fit it into
a register that can be read by ALU
(arithmetic and logical unit).

• The electricity peak in C4 is due
exclusively to the decryption of the
instruction movlw (because of the
pipeline)

• In C8, as there is a nop after the
movlw (encoding only with 0s),
we always have the same variation
(= same number of bits coming
through which go from 1 to 0 on the
microcontroller’s internal register:
so we measure the same peak twice
while the microcontroller decode
two different instructions!

Conclusion 2:
The power measurements
taken at a given time
depend on the previous
instructions executed and
data processed
As we see, the power measurements
taken at a given time depend on
the previous instructions. Indeed,
the latter are dealt with by the
microcontroller’s pipeline in advance
of the stages (before the actual
execution). It is a major problem
that can quickly limit (or at least
complicate) the extraction of the code
by an embedded system’s analyses of
current consumption … But all is not
lost! (cf. chapter overleaf)

C1 C2 C3 C4
Decoding Read k CPU CPU
 here 0x00 Calculation write the
 (movlw 0x00 work in
 ou k =0) registers

1ST PEAK

This current peak
linked to the decoding
of the MOV during the
first cycle of execution
of the NOP (1st NOP in
the program)

2ND PEAK

This current Peak (wave
form is identical!)
linked to the decryption
of another NOP during
the execution cycle of
the MOV

38 39HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

Measure 3:
Influences of the bits values
on current consumption
(Hamming weight!)
The difference in instructions or in data
impacts current consumption of current.
This impact is directly proportional to
the bit value for the instructions (hexa
values for instructions) or for data (value
of the data) and mainly for transitions:
this means the number of bits which go
from 1 to 0 (or the contrary) between
two ticks of the clock.

This concerns the idea of Hamming weight:

For instance, the two following byte 0
1 0 1 0 1 0 1 and 0 0 0 0 0 1 1 1 have
a hamming weight of 3 (there are 3
different bits at value=1)

The greater the weight (in relation to two
sets of data to be compared) the higher
the electricity consumption will be.

There are existing electric consumption
models based on the Hamming notion
of distance (see reference Jie Li et al.,
http://www.scientific.net/AMM.121-
126.867)

Below we have a practical demonstration:
Let’s compare the consumption of a
program with 4 nop and a 2nd program
with nop - movlw 0xFF – nop - nop

Encoding of the nop instruction
=> 0000 0000 0000 0000
for the instruction movlw 0xFF
=> 0000 1110 1111 1111
Measurement graph is

In relation to the second program (which
contained a movlw 0X00), we can see a
difference in measurements linked to
the difference in the number of 0 bits
and 1 bits between the two instructions.

Conclusion 3:
There is dependence
between the values of data
and instructions in relation to
the measured consumption
Therefore we have a validated
dependence between the values of
data and instructions in relation to the
measured consumption

Global interpretations of
our 1st set of results and
limitations showed
It therefore seems possible for us to
“find” the data and the instructions
in the traces of the electric
consumption.

However, creating a disassembler is
more complex as all the measurements
always depend on the instruction which
had previously been decoded (because
of the pipeline)

How to progress regarding our
objectives? (See below)

Is there a solution to improve
our “disassembler” based
only on the analysis of
current consumption?

Create a dictionary: we applied
the rainbow table principal
to memorize a “footprint” of
current consumption for each
pair of instructions that could be
executed
We need to create a dictionary of current
consumption for each combination of
possible pair instructions for a specific
embedded system (rainbow table
principal)

Here are some ideas that we are going
to experiment in order to advance
in this study. The goal is to create a
disassembler which would be based only
on the analysis of used current to “find”
the code or data which is executed on an
embedded system.

The main problem is the sequential
aspect: state/previous instruction
which impacts the used current at a t+1
time.

The idea is to memorize a signature
of electricity consumption for each
pair of consecutive instructions in an
exhaustive way. The idea is to create
a sort of dictionary (this principle is
similar to a pre calculated hash tables or
rainbow tables).

To create these dictionaries, the
principle is the following:

In the follow up of this analysis, for
more simplicity5, we will only look into
instructions which last just one machine

5 This our “experimental choice”!

cycle. If, as a minimum, we want to find
all the possible pairs of two instructions
with the matching data, we need 256^2
or 65536 measurements.

Then, we just need to compare the
current consumption “footprint” of an
“audited” system with the dictionary
we have created.

This dictionary will only enable us to
distinguish a list of 2 instructions, so
it then becomes obvious that to carry
out those measurements properly, we
will have to continue developing our
software to be able to “find” more
instruction.

However, as rainbow tables take time
to generate, our current consumption
dictionary too!

Moreover, the programs that create
the dictionary must be able to
synchronize the signals on its own but
more particularly to send the right
program to the microcontroller before
the measurement is sent to extract the
electricity signature. Thus we create an
automatic mode.

But finally, there is no interest in
creating all the instruction couples (for
a proof of concept ;-) , because this type
of dictionary will be very long in spite of
our software which automates this task.

We must not omit the Hamming weight.
In truth we only need to make a Hamming
weight related dictionary if we take the
example of our three nop with a movlw
instruction that we want to identify:

As an example of Hamming weight equal
to 1 we have movlw 1, 2, 4, 8,
16, 32, 64, 128 so we only take the
“footprint” of one of these instructions,
then for the weight of 2 we have movlw
3, 5, 6, 9, 10, 12… we soon realize

Electricity peak linked
to the movlw 0x00
(cf. measurement 2)

Electricity peak linked
to the movlw 0xFF
(cf. measurement 3)

40 41HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

that if we proceed like this, our dictionary
will be quicker to create but will be far
less precise, according to the instruction
we looked for.

For instance, the 0 has a 0 weight and
it is the only one. The 255 (0xFF) is also
the only one to have the 8 bits at 1. The
Hamming weight 1 only has 8 values. But
let's see a summary of this in the table
on the top right column, to have a better
understanding.

We soon realize that according to the
Hamming weight of the instruction we
are looking for, the value we have found
has variations in precision.

For the following of our study we have
created a dictionary of all possible
permutations of program that’s included
instructions and data with nop and
movlw xx.

We need to mention that the use of a
dictionary imply that our method could
only be adapted to reverse the code of
embedded system based on well know
board or ready to use system (FGPA
based board, Developpement board, Pre
designed embedded system board…).
Why? Because, we need to be able to
create a dictionary. And for that, we
need to upload our X Pair instructions as
described above…

Examples of instruction discovery with
our “ultra-basic disassembler based
only on the analysis of current BUT

with the use of our dictionary”
Measurement 4: How to
find an unknown instruction
inserted after 3 nop with this
technic?
At first, we program the microcontroller
with an instruction pair which is available
in the dictionary previously created.
So, our software will try the match the
“unknown instruction” between nop
(in our case a movlw 0xFF but our
“disassembler” don’t know it!)

Here is the program with the “unknown
instruction” that we will “upload” to
the PIC.

Then, we launch the software to capture
the current: and we launch the graphical
instruction search (a result which is
easier to interpret because very visual)

The software found the “unknown
instruction”

The Data found is

And the “next instruction” found is

The program has analyzed the current and
has inferred the executed instruction.

Here we are talking of a movlw 0xFF
followed by a nop. According to our
tables of hamming groups, this result is
100% true, the program only proposes FF
as a solution.

However we are going to make another
attempt.

For instance, we try to find the following
couple instruction movlw 0x24, nop.

The hexadecimal number 24 equals in
binary.

0 0 1 0 0 1 0 0
That corresponds to a Hamming weight
of 2, let’s see what the “dissassembler”
gives us:

Here is the program with the “unknown”
instruction that we will “upload” to the PIC

We launch again our “disassembler”

The software results are

If we make a zoom on GUI,
Instruction found by the program is

Data found is in the hamming group of 2
(with contain 28 possibilities)

We replace
the instruction
by movlw 0x24

42 43HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

 Hamming Group Number of instruction
 or data value
 by hamming groups
 0 1
 1 8
 2 28
 3 56
 4 70
 5 56
 6 28
 7 8
 8 1

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

group (which include de 0x26 value!)
followed by a NEGF W : Good !

Global conclusion
We are perfectly capable of finding
certain instruction pairs. It is rather
encouraging but according to the type
of instruction and of data, groups have
formed (accuracy decreased!)

However, to be able to design a complete
disassembler with this type of method, we
need to overcome some issues regarding
several specific set of instructions:
Branch and Jump instructions, I/O
manipulation instruction, more than
1 cycle instruction. The influence on
current consumption for those later
would be different for sure (further
investigation need to be scheduled!)

We need to mention that the use of a
dictionary imply that our method could
only be adapted to reverse the code of
embedded system based on well know
board or ready to use system (FGPA
based board, Developpement board, Pre
designed embedded system board…).
Why? Because, we need to be able to
create a dictionary. And for that, we
need to upload our X Pair instructions as
described above…

How can we move further?
We have to find another method to
subdivide the Hamming groups even
further in order to obtain increased
accuracy.

Maybe that could be done by using
another physical phenomenon such as
the fact that all the memorization latch
(or storage flip flop) (transistor based)
do not commute simultaneously. It could
be possible, but it must be synchronized.
It will probably be very difficult to
identify this structure. To be followed
up. (A more advanced submission on
another conference ;-)

Some solutions for protection
against this type of attack
There are a variety of countermeasures.
For instance, those which are used in
the field of encryption key protection.
Licenses have already been submitted for
counter measures for electricity analysis,
measures against the appropriation of
keys (cf. notably for the site: http://
www.cryptography.com).

Here is a non-exhaustive list of certain
types of counter-measures:

• Leakage reduction: there are techniques
to make the totality of a sequence of
operations independent of the key
as well as the balancing techniques
for hardware and software, in order
to reduce the variations in energy
consumption for different sets of data.

• The introduction of noise: there are
techniques enabling to allow different
types of noises to “interfere” with
the measures of energy consumption
available for the attacker.

• The incorporation of random events:
these are randomization techniques for
the data manipulated by the device.

In the context of our study, the
creation of a microcontroller or of
microprocessors with integrated
internal protections could be very
costly (with the necessity of adding
hardware elements). However, the
integration of protection solutions in
the FPGA software processors seems
more easily achievable as they already
have programmable elements.

So one solution would be to create a
“software processor” with integrated
protections, knowing that the “creation”
of this type of “soft-core” processor
is exclusively based on programming
(FPGA principle). ¶

And the “next instruction” found is

The program has inferred an instruction
with a Hamming weight of 2 for the
data. But remember, a Hamming weight
of 2 also means 28 possible instructions.
But we have our 0x24 in this Hamming
Group. So we are still “good", but less
accurate.

We will continue with a more
complicated case

Measurement 5:
How to find 2 “unknown
instructions” inserted inside
a list of Nop?
We will therefore program our
microcontroller with two instructions
which are in our dictionary.

We re-launch the software to get an
analysis

If we zoom in the GUI

The “dissassembler” found the following
intruction

And the following possible data

And finally the “Next instruction”

Thus, our application is able to find the
pair movlw 0xDD (where DD could be
one of the possibility in the hamming

We replace 2 nop
by movlw 0x26
and a NEGF W for
example

44 45HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

Ha
rd

wa
re

Se
cu

rit
y

Hardware Security

About the Authors
YANN ALLAIN, founder and current director of the OPALE SECURITY company (www.
opale-security.com). He graduated from a computer and electronic engineering school
(Polytech - Université Pierre et Marie Curie). After a time in the electronic industry as an
engineer in embedded system conception, he made a career move towards ICT. He started
as a production manager for a company in the financial sector (Private Banking), and
evolved towards ICT security when he became part of the ACCOR group. He was in charge
of applicative security for the group. He has an 18-year experience, 14 of which dedicated
to IT system and embedded system security. OPALE SECURITY are security consultants
who deal with research projects linked, amongst other things to the security of embedded
systems (http://www.opale-security.com/innovation-securite-systemes-information.html)

JULIEN MOINARD, an electronics technician with a solid background in this field (over
7 years) associated with many personal and professional experiments in the field of
microcontrollers.

Bibliography and References
Clavier, C. (http://www.prism.uvsq.fr/fileadmin/CRYPTO/these-cc-s.pdf). De la séecurité

physique des crypto-systèmes embarqués.
Jie Li et al., 2. A.-1. (http://www.scientific.net/AMM.121-126.867). Hamming Distance

Model Based Power Analysis for Cryptographic Algorithms.
Microchip. (http://ww1.microchip.com/downloads/en/DeviceDoc/39631E.pdf).

PIC18F4520, see Datasheet.
Oswald, E. (http://www.cs.bris.ac.uk/Research/Seminars/departmental/2007-03-29_

DeptSeminar_Elisabeth_Oswald.pdf). Power Analysis Attacks. Computer Science
Department: University of BRISTOL.

(s.d.). Source: http://www.prism.uvsq.fr/fileadmin/CRYPTO/these-cc-s.pdf.
(s.d.). Source: http://www.prism.uvsq.fr/fileadmin/CRYPTO/these-cc-s.pdf.
Thomas Eisenbarth, C. P. (http://math.fau.edu/~eisenbarth/pdf/

SideChannelDisassembler.pdf). Building a Side Channel Based Disassembler.
Valette, R. D. (http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lcr/dalemuva05.pdf).

Side Channel Analysis for reverse Engineering (SCARE).
Vermoen, D. (http://ce.et.tudelft.nl/publicationfiles/1162_634_thesis_Dennis.pdf).

Reverse engineering of Java Card applets using power analysis.

46 HITB | ISSUE 009 | NOVEMBER 2012

Ha
rd

wa
re

Se
cu

rit
y

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

48 49HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

when LONGFI~1.EXT, LO0135~1.EXT, and such like names can be identical
to LongFileName.Extension, but a situation when a full name has nothing in
common with a short name is also possible.

3. DOS devices and reserved names. Such names as NUL:, CON:, AUX:, PRN:,
COM[1-9]:, LPT[1-9] are reserved to ensure compatibility with previous
operating systems, and the use of a colon is not obligatory. The names
themselves, used in any part of the file path, will be considered as the names
of physical or virtual devices in any case.

4. Reserved characters. < > : " \ / | ? * are characters reserved for system
needs (input-output redirection, argument transfer, limitation of paths with
whitespaces, path element division and insertion for search (see below)).

5. Ending characters. Ending dots are ignored in names, ending slashes are also
ignored in the majority of web servers. It makes such names as Filename,
Filename... , Filename\\\, and etc. identical.

6. OS system objects. Windows API CreateFile(), a default function, allows
handling not only file system entities but other OS objects as well. So, for
example, it can be used to ensure application communication with named
pipes and mailslots, default inter-process communication primitives. You
only need to know a particular primitive name: \\Host\pipe\<name>, \\Host\
mailslot\<name>. Of course, a web application needs appropriate rights to
interact with OS system objects.

7. Globbing. Such characters as *, !, and ? are usually used in search functions
(FindFirstFile/FindNextFile) to define a name template, by which the search
is carried out. However, the characters < > and ", equivalent of * ? and the dot
character (.) respectively, can also be used there.

8. Alternative syntax of relative paths. Use the path in the format Disk:FileName
to address a file in the current directory of the specified disk: C:notepad.exe
will point to C:\Windows\notepad.exe, if Windows is the current directory of C.

9. Various path formats (UNC, Unicode, and their combinations). The following
names define the same directory C:\Windows\System32\:

\\Hostname\C$\Windows\System32\
\\.\C:\Windows\System32\
\\?\C:\Windows\System32\
\\?\UNC\Hostname\C$\Windows\System32\

10. Meta attributes and alternative data streams. Little is known (at least in the
web technology sphere) about the fact that each NTFS entity is defined by a
set of attributes (so-called meta attributes), which can be addressed using
extended syntax of NTFS names specifying the meta attribute name and type
in the format: \Directory:<Name>:<Type>\File:<Name>:<Type> (see Table 1).

A
ccording to the report “Web Application Vulnerability Statistics for 2010-
2011” made by Positive Research Center experts, ASP.NET is the second
among the most common frameworks following PHP applications. Besides,
the report states that the percentage of ASP.NET applications exposed

to critical vulnerabilities (such as OS Commanding, Path Traversal, SQL Injection)
is extremely low. It has a reasonable explanation: ASP.NET includes quite a lot of
mechanisms allowing a developer to create secure applications with less effort
in contrast with other frameworks. These mechanisms may include the use of
languages with strong static typing, the use of a virtual environment ensuring secure
code execution, following the concept “secure by default”, availability of reusable
security mechanisms in the default .NET platform library, and etc.

However, both the process of development and security analysis may face situations
when developers and pentesters disregard specific features of the .NET platform,
OS Windows, and web application environment, causing critical vulnerabilities in
applications. This article deals with the analysis of such situations.

A BLAST FROM THE PAST: FILE HANDLING
NTFS, designed with regard of backward compatibility with FAT and HPFS, is one of the
most complicated file systems among the WWW infrastructure systems. NTFS has a lot of
diverse and poorly documented possibilities. On the other hand, Windows API interfaces
communicating with a file system do not make it any clearer allowing, for instance, to
address the same directory or file by several methods at a time. Moreover, they introduce
their own specific features in file handling. Remember the main NTFS features.

1. Case insensitivity of names. Such names as Filename, FileName, filename,
and FILENAME are absolutely identical for the file system.

2. Support for 8.3 short names. To ensure backward compatibility with the
file systems of previous operating systems, NTFS creates a pseudonym in the
DOS short name format for each name by default. It may lead to a situation

To Hack an ASP.Net Site?
It is Difficult, but Possible!
V. Kochetkov

File Meta Attributes Directory Meta Attributes

$STANDARD_INFORMATION $INDEX_ROOT
$FILE_NAME $INDEX_ALLOCATION
$DATA $BITMAP
$ATTRIBUTE_LIST
$OBJECT_ID
$REPARSE_POINT

TABLE 1

50 51HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

1. A managed application interacts with unmanaged (native) vulnerable
libraries. Such vulnerability as integer overflow in the native library gdiplus.
dll (MS12-025), resulting in heap corruption and arbitrary code execution, is a
good example. This library is used in implementation of .NET System.Drawing
namespace methods, and the vulnerable function itself — in System.Drawing.
Imaging. EncoderParameter method, which made managed applications
vulnerable to code execution outside the CLR environment. The so-called
mixed assemblies containing both a managed and unmanaged code at the same
time can be attributed to the same case. The С++ language implementation
for .NET C++/CLI allows generating such assemblies. For example, the official
version of embedded SQLite for the .NET platform is realized exactly as a
mixed assembly. And if SQLite is exposed to memory corruption, then the
managed code that uses the library will be vulnerable as well.

2. Even more interesting possibility is implemented in the C# language. It
allows a developer to specify particular code blocks as insecure, as a result
of which types are not controlled, the compiler and CLR checks are not
carried out within such blocks. The following managed code is exposed to
memory corruption due to the use of an insecure block and lack of input
data control.

It is evident that if the method gets a string with more than 10 characters, it will lead
to memory corruption as a result of its copying to an assigned array.

Exploitation of such vulnerabilities in the .NET applications is complicated both
by the CLR mechanism of data execution prevention (DEP) forced for all hosts and
by the ASLR technology implemented in JIT compilation of managed applications
to machine code. However, exposure to such vulnerabilities of the ASP.NET/MVC
applications will certainly result in DoS vulnerability. Due to specific features of
the ASP.NET hosting implemented in the IIS web server and possible initialization
delays related to initial JIT compilation of application methods at the initial call,
continuous exploitation of memory corruption will lead to complete web application
unavailability.

The technology of memory corruption detecting varies little from the one
generally accepted in other application classes: input parameter fuzzing with
long sequences (strings, arrays, lists), use of integer literals and floating-point
literals with values going beyond the limits of an acceptable type, negative
values, and etc. Analyzing the source code, pay attention to the use of arithmetic
operations and memory handling in all blocks of managed code specified by the
key word unsafe.

The most interesting, in terms of exploiting vulnerabilities in web infrastructures,
are meta attributes $DATA and $INDEX_ALLOCATION. The first allows addressing
the main file data stream and its content. The other — the directory content,
that is the list of its subdirectories. In other words, both meta attributes provide
an alternative method of addressing file system entities. So the full name C:\
Windows:$I30:$INDEX_ALLOCATION\hh.exe is equivalent of conventional C:\
Windows\hh.exe, and C:\Windows\notepad.exe::$DATA means the same as C:\
Windows\notepad.exe.

It would seem this specific feature was implemented in web servers and web
frameworks long ago... However, when we were preparing materials this article is
based on, vulnerability PT-2012-06 was detected in the latest versions of NGINX. It
allows an attacker to bypass possible directory access restrictions addressing them
with the extended syntax of the NTFS meta attributes (http://www.securitylab.ru/
vulnerability/425513.php).

It adds further credence to the idea that one needs to counter any specific feature
of an environment, even if it seems extremely out of date, when developing or
analyzing web applications. Moreover, all the listed specific features of file handling
may be useful both for bypassing filters and rules implemented in a web application
and for exploiting Local File Inclusion vulnerabilities.

MEMORY CORRUPTION
The .NET platform ensures secure code execution (managed by the CLR environment)
by means of verification mechanisms and type compliance control both at the
stage of compilation and at the stage of execution. As a result, it is assumed that
vulnerabilities related to memory corruption (buffer or heap overflow, integer
overflow, and etc.) are impossible in managed applications. However, this isn’t
entirely true — a managed application may be exposed to such vulnerabilities in two
different cases.

FIGURE 1

unsafe void bufferOverflow(string s)
{
 char* ptr = stackalloc char[10];
 foreach (var c in s)
 {
 *ptr++ = c
 }
}

LISTING 1

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

52 53HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

same type. It is easy to figure out that in accordance with the birthday paradox the
collision probability is 50% already for 64K hashes. As practice shows, generating of a
huge number of .NET objects with the same hash code is not an intractable problem,
at least for string types: using the meet-in-the-middle approach, it is possible to
obtain several thousands of such strings within a reasonable time.

ASP.NET stores form data received in POST requests (as well as parameters from URL,
cookie, and session data) in the objects of the class System.Collections.Specialized.
NameValueCollection, which is actually a hash table. If a web application runs in a normal

mode, elements in such tables are
distributed as follows in Figure 2:

Hash codes of parameter names
calculated by the following
algorithm serve as key values.

However, if the hash code of
request parameter names (string
type objects) is the same for all
parameters, the following will
happen shown in Figure 3.

Due to the collision, more and more
time will be spent on each element
insertion to ensure key access to the
element later on. If a query with a
big number of such parameters is
received, their handling will take

CULTURAL PECULIARITIES. TURKISH I
In .NET Framework, culture is a set of preferences based on a language and
cultural traditions such as regional settings (for instance, currency), an alphabet,
measurement system, and etc. The .NET platform provides a developer with all
tools necessary for supporting several cultures in applications simultaneously. In
particular, it is taken into account while handling string types. On the other hand, ASP.
NET makes automatic culture determination possible basing on the data transferred
by a client browser in the Accept-Language HTTP header. This function can be used
both for the whole site and for its particular pages.

However, due to significant differences in some cultures, application strings may
be handled in a way different from the one planned by a developer. Thus, in the
alphabets of cultures that use the English language, only one pair of the letters I/i
is defined (capital and small letters). At the same time the alphabet of the Turkish
culture has two pairs of such letters and none of them coincide with the English one
(I/ı and İ/i). Automatic culture determination is enabled in the following example of
the ASP.NET page.

Besides strings are compared without regard to a current culture determined
from the received HTTP header of a browser request. In the case attackers specify
the tr-TR culture, they will be able to bypass checks implemented in conditional
statements. This problem was named Turkish I, though it is common not only for
the Turkish culture (the same effect can be achieved with the Azerbaijan culture
az-AZ).

If a web application is analyzed, the problem is detected by transferring
“controversial” cultures in Accept-Language header with simultaneous use of
complex characters in string parameters. If source code is analyzed, it is necessary
to pay attention to invariance of string data logic in pages, for which automatic
culture determination is enabled.

HASH COLLISION
In .NET Framework any class is inherited from the System.Object class that defines a
small basic set of methods common for any object hierarchy. These methods include
GetHashCode(), which returns the integer hash code of a particular object, which
can take on values within the range from -2147483648 to 2147483647. It is used
to implement data structures based on hash tables and to compare objects of the

<%@ Page Language="C#" Culture="Auto" %>
<%@ Import Namespace="System.Globalization" %>
<! DOCTYPE html>
…
<script runat="server">
…
if (Request["mode"].ToLower() != "admin")
…
if (String.Compare(Request["path"]), 0, "FILE:", 0, 5, true)
…

LISTING 2

FIGURE 2

FIGURE 3

for (; length > 0; length -=1) {
 hash = (hash ^ suffix[length – 1]) * 1041204193 ;
}

LISTING 3

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

54 55HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

ASP.NET/MVC SPECIFIC FEATURES
Standard HTTP Handlers
One of the specific features of ASP.NET is the so-called HTTP handlers, program
modules responsible for handling requests to any content or content type. A default
set includes document handlers .aspx, .ashx, .asmx, and etc. There are a few
handlers among them quite interesting in terms of security analysis.

Trace.axd is one of such handlers. It allows tracing web application work both
from a browser and specialized utilities or modules of integrated development
environments. By default, this handler is unavailable in the release configuration of
a web application, but very often it is enabled by developers to debug production
environment functionality (in this case tracing may be allowed either for particular
pages or for the whole application).

In fact, trace information is similar to information returned by the phpinfo() function
in PHP applications, but it can be obtained for an arbitrary query and looks as follows.

Beside disclosure of server's information, due to reflecting of all query data in the
Trace.axd response (including the values of headers, form fields, etc.), this handler
can be used to hijack data unavailable for client scripts while exploiting the XSS
vulnerability (for instance, cookie with httpOnly).

the whole processor time and will make a web application unavailable for this period.
This very possibility was demonstrated by Alexander Klink (Alech) and Julian Wälde
(Zeri) in their research (http://events.ccc.de/congress/2011/Fahrplan/events/4680.
en.html) and was identified as vulnerability MS11-100 afterwards.

This vulnerability was eliminated in a peculiar way: now ASP.NET declines HTTP POST
request by default if the number of its parameters exceeds 1,000. Developers can
either tighten or ease this restriction with a specific option in web.config:

<appSettings>
 <add key="aspnet:MaxHttpCollectionKeys" value="some number here"/>
</appSettings>

It is easy to check if a web application is exposed to this vulnerability — just send the
POST request with parameters, which number exceeds configured restrictions. It is
also worth paying attention to any data collections received by a web application
and allowing a huge number of named elements. Analyzing codes, it is required
to study the overridden GetHashCode() method used in hash tables to find out if
generated hash codes are equally allocated.

Another common mistake is the use of object hash codes as their unique identifiers.
It is evident that if an attacker is able to generate an outside object, which hash
code coincides with the code of an existing object, then it may let them bypass
checks or lead to application failure. Analyzing codes, also make sure that object
hash codes are not used as object identifiers or as the arguments of operations
implying their uniqueness. Listing 4 shows that the class carrying out the logic of user
account work allows an attacker to act as another user in the application. It is only
needed to figure out such a Name value, which together with Id will generate a hash
code identical to the hash code of an attacked account.

class UserInstance
{
 public int Id;
 public string Name;
 ...
 public static bool operator ==(UserInstance a, UserInstance b)
 {
 return a.GetHashCode() == b.GetHashCode();
 }

 public static bool operator !=(UserInstance a, UserInstance b)
 {
 return !(a == b);
 }

 public override bool Equals(object obj)
 {
 return this == (UserInstance)obj;
 }

 public override int GetHashCode()
 {
 return (this.Id.ToString() + this.Name.ToLower()).GetHashCode();
 }
 ...
}

LISTING 4

FIGURE 4

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

56 57HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

3. Use of digests to check authenticity of the HTTP handler arguments.
4. Disabling receipt of any files except for the JavaScript scripts with

ScriptResource.axd.

Unfortunately, the situation is still dangerous. A machine key is still used in some
significant operations: view state encryption, event validations, arguments of
WebResource.axd/ScriptResource.asd. Therefore, if it is compromised via any of
these channels, the whole ASP.NET encryption used for interaction with a client side
will be compromised.

It is worth noting that the padding oracle attack is still possible, if a web application
discloses padding mistakes on its level allowing to differentiate them from other
errors (for example, writing about the appeared exception in detail). Another possible
vulnerability is errors in encryption of third-party (in relation to the framework)
data transferred to a client side.

Analyzing security of the ASP.NET web application, it is necessary to pay special
attention to the search of possible padding oracles (that means information
leakage paths), due to the high severity of vulnerabilities related to them. You can
use the utility padbusterdotnet that allows automating the process (http://blog.
mindedsecurity.com/2010/09/investigating-net-padding-oracle.html).

Analyzing the source code, it is necessary to pay attention to the handlers of errors
related to client-side data decryption and to any third-party encryption of resources
crossing the web application trust boundary in both directions.

View State, Event and Request Validation
View state (ViewState) and event validation (EventValidation) are embedded
mechanisms for information exchange with a client side in the WebForms applications
of ASP.NET.

The ViewState mechanism
is a container entered
via HTTP requests, which
stores information about
the properties of all
management elements of
the current ASP.NET web
form.

Developers often use it
as a cheap alternative to
session data to store data
on a client side. The ASP.
NET framework supports
encryption and integrity
check of this container (as
two separate possibilities),
which, however, are often

For more information about web application tracing in ASP.NET, address the appropriate
section of MSDN (http://msdn.microsoft.com/en-us/library/bb386420).

WebResource.axd and ScriptResource.axd are probably the most much-talked-of
handlers. Both of them are intended for obtaining static application resources. The
difference is that the first one allows obtaining resources only from web application
binary assemblies, and the second — file resources stored on a disk as well. Schemes
of use are identical in both cases:

http://hostname/*Resource.axd?d=<resourceId>&t=<timestamp>, where

t is a timestamp necessary for hash mechanism enabling;

d is a resource identifier, which actually is a Base64-encoded string, encrypted by
a symmetric key stored on a server side (so-called machine key used for encrypting
important data transferred to a client side). The string itself is a listing of all
requested resources and includes a digest for its integrity control:

Q|~/Scripts/Script1.js,~/Scripts/Script2.js,~/Scripts/Script3.js|#|21c38a3a9b

It is obvious that, having a machine key, an attacker can request arbitrary resources
via these handlers and arbitrary files within a web application directory via
ScriptResource.axd. A resource identifier is encrypted with the symmetric algorithm
(3DES or AES) in the mode Cipher Block Chaining (CBC). It caused the padding oracle
vulnerability (MS10-070) detected by the researchers from Aura Software Security
(http://pageofwords.com/blog/content/binary/KirkJackson-PaddingOracle.pdf)
and based on the possibility of machine key brute force within a reasonable time, if
a server gave different variants of responses to the following types of requests with
encrypted data.

1. Incorrect ciphertext, correct block padding
2. Incorrect ciphertext, incorrect block padding

If attackers were able to differentiate server responses to such requests (an error
status, an error message in a page text, different time for handling various types
of requests), they could restore the machine key by sending several thousands of
requests to the web application. Receiving the key, they could

1. forge authentication tokens (encrypted strings with information about an
authentication subject);

2. decrypt and forge data on an application status and event validation (see
below);

3. forge arguments for WebResource.axd and ScriptResource.axd and, therefore,
receive arbitrary files from a web application directory.

The issued patch that eliminated this vulnerability entered into the following changes.

1. Use of a generalized error message in case of incorrect padding.
2. Improved algorithm for initialization vector generating.

FIGURE 5

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

58 59HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

disabled by developers for production system debugging, but this threatens the
container integrity and confidentiality of the data stored in it. Any details on threats
related to incorrect use or configuring of ViewState can be learned from the article
by Timur Yunusov ViewState Vulnerabilities (http://ptsecurity.com/download/
viewstate_en.pdf).

The EventValidation mechanism is a similar container intended for validation of
the data sent to a server as a result of client-side events. This container stores
information about all possible field values (for which the event validation mechanism
is enabled) in the hash codes form.

It is a common opinion that
the enabled event validation
prevents the CSRF attack.
However, this isn’t entirely
true. This mechanism prevents
values unavailable in the white
list of the EventValidation
container from being sent in
the form fields (for which the
mechanism is enabled). As a
rule, it hardly prevents the CSRF
attacks. This mechanism can be
used to resist such attacks, but
it requires developer’s extra
efforts. Similar to ViewState,
EventValidation supports
encryption and integrity control
enabled by default.

The Request Validation mechanism is actually a primitive WAF embedded in ASP.NET
to resist XSS attacks. Its logic is utterly simple — forbid a web application to handle
requests, which parameters comply with any of the following conditions:

1. contain the &# combination;
2. contain the < character and a following letter or one of the characters ! / ?;
3. contain a third-party parameter starting with с __.

No other rules are implemented by this WAF. It is evident that it can be effective only
if input data gets among the tags of an HTML document during the XSS exploitation —
in any other case it won’t take long to bypass it.

Request validation was a global mechanism for all site pages spreading over the
parameters of a request string and web form field in ASP.NET v. 1.1—4.0. Version
4.5 provided a possibility to disable it for particular pages, use “lazy validation”
(executed only if request data was addressed), and access unvalidated data.
Moreover, validation in this version was applied to all request parameters including
HTTP headers and cookie.

Local File Inclusion (LFI)
It is a widely-spread opinion that the ASP.NET web applications are not exposed to
the LFI attacks or that it is impossible to execute code in included files as a result of
such attacks. Of course, that is not so. There are three methods in ASP.NET, with the
help of which developers can make a web application vulnerable to the LFI attacks,
and one of them even allows code execution in an included file. All these methods
are connected to incorrect use of functions related to file operations.

1. Response.WriteFile(<vfilename>) includes a file, the path to which has been
transferred in an argument, into a response to a request. The path is virtual
and configured in relation to the root of a web application.

2. Server.Execute(<vfilename>) calls a handler to a file, the path to which has
been transferred in an argument. The result is included into a response to a
request. The path is virtual and configured in relation to the root of a web
application.

3. File.ReadAllText(<filename>) means the same as clause 1, but the path is
physical and can be absolute.

Therefore, the second variant gives everything necessary for LFI with code execution,
but with two restrictions: 1) an attacker needs a possibility to download the *.aspx
file into the directory of a web application; and 2) an attacker also needs a possibility
to form a path to this file operating with request input data. Of course, the second
restriction is applied equally to the other variants. In addition, it is necessary to take
into account the following peculiarities.

1. A path (both virtual and physical) may contain indicators to a parent directory
(..). However, in case of virtual paths, it won't be possible to get out of the
root directory of a web application.

2. Today there are no known methods of interrupting generated paths (for
example, injecting null byte or padding a path with dots up to an extra length).

The smallest possible shellcode, which can be uploaded as an included *.aspx page in
the second variant, can look as follows.

Web application testing on exposure to the attacks of this class hardly differs from
testing accepted for web applications based on other frameworks and consists in

FIGURE 6

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Diagnostics" %>
<%=
Process.Start(
 new ProcessStartInfo(
 "cmd","/c " + Request["c"]
)
 {
 UseShellExecute = false,
 RedirectStandardOutput = true
 }
).StandardOutput.ReadToEnd()
%>

LISTING 5

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

60 61HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

attempts of handling parameters, which contain data similar to virtual paths, file
names, and etc. Analyzing code, pay attention to those blocks, in which the above
mentioned methods can be called, and make sure that arguments transferred in
these blocks either do not depend on input data or additionally checked or cleared.

MASS ASSIGNMENT
Mass assignment vulnerability is more typical of frameworks with dynamic languages.
It consists in providing a developer with a possibility to bind all fields of one type
to the fields of another type not monitoring the list of assigned fields. Due to this
very vulnerability, in March 2012 the GitHub service was attacked, and the attacker
obtained privileged access to several project repositories (https://github.com/
blog/1068-public-key-security-vulnerability-and-mitigation).

ASP.NET wasn’t much interested in the mass assignment vulnerability unless ASP.
NET MVC appeared. One of the peculiarities of the framework that gained ground
so swiftly is the so-called binding of a model to request data. For instance, if a web
application uses the following model to store user information

It is evident that the privileged user indicator IsPrivileged should not be filled out by
users themselves. However, if the above mentioned structures are used, an attacker

can transfer a parameter with the same name to a controller and create a user
account with high privileges: /Users/Edit/1?IsPrivileged=true.

ASP.NET MVC allows avoiding the mass assignment vulnerability in several ways.

1. Using the Include and Exclude attributes of the Bind flag to determine
controller's arguments or model class (listing 10 and 11).

2. Specifying the list of included and excluded fields if a model is updated using
the methods UpdateModel() and TryUpdateModel() (listing 12).

3. Checking particular model fields with the ReadOnly flag (listing 13).

4. Using a strongly typed approach — determining additional classes for
intermediate binding with request data containing only necessary fields and
using them to call the generic versions of UpdateModel(), TryUpdateModel().

5. Defining a complete view model and defining secure methods to bind it to a
main model.

Therefore, analyzing web application security, it is necessary to test all access points,
which controllers take on parameters of critical model elements, if they handle

public class User
{
 public string Name { get; set; }
 public string Email { get; set; }
}

[Bind(Exclude = "IsPrivileged")]
public class User
{
 // ...
}

public ActionResult Create([Bind(Exclude = "IsPrivileged")] User user)
{
 // ...
}

var user = new User();
 TryUpdateModel(user, includeProperties: new[] {
 "Name",
 "Email"
 });

public class User
{
 // ...
 [ReadOnly(true)]
 public bool IsPrivileged { get; set; }
 }

public ActionResult Create()
{
 // ...
 string user.Name = Request["name"];
 string user.Email = Request["Email"];
 // ...
}

public ActionResult Create(User user)
{
 // ...
}

public class User
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public bool IsPrivileged { get; set; }
}

LISTING 6

LISTING 10

LISTING 11

LISTING 12

LISTING 13

LISTING 7

LISTING 8

LISTING 9

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

62 63HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

parameters with arbitrary names. Analyzing code, it is required to point out those
models, in the fields of which important data is stored, and study all controllers
bound to such models.

LINQ INJECTION
LINQ (Language Integrated Query) is a technology adding necessary tools and syntax
of a query language to the programming languages of the .NET platform. This
language is a unified tool for querying regular data structures that allows abstracting
from their source and interaction methods. In fact, LINQ queries can be both used
over an object model implemented in an application (besides they do not depend on
mapping this model to real databases) and converted to queries to the management
system of a particular data storage. LINQ query logic is defined by the used provider
for queried data types. A typical LINQ query is provided in listing 14.

In fact, this syntax is a simplified format of defining the sequential calls of extension
methods and it is converted by a compiler into an equivalent code (so-called fluent
interface, listing 15).

A developer can use either a simplified syntax or the fluent interface. Expressions
transferred as arguments to the extension methods are converted by a compiler into
the so-called expression trees. For instance, an expression checking whether a figure is
divided evenly by two x => x.field1 % 2 == 0 is represented as a tree (listing 16).

Therefore, dynamic creation of LINQ queries of the time execution is a rather
difficult task. A developer can implement dynamic building of expression trees,
though this solution code will be quite lengthy. However, if they need to change
some parameters of the LINQ query, defined outside expressions (for example, a sort

order or the list of selected fields), then the only solution will be the implementation
of all possible variants of the query selecting the one, which is needed right at the
time of code execution. This solution is not always good enough, that is why there
appeared a lot of libraries with time helping to ease this task. The most well-known
library is System.Linq.Dynamic included in Visual Studio 2008+ and Windows SDK of
the relevant versions. This library allows defining particular fragments of the LINQ
queries as strings, which are parsed and compiled at the moment of application
execution (listing 17).

In this example the Where() expression is defined by the string with the use of
the library System.Linq.Dynamic, which brings to the expression tree building at
the time of code execution. What will happen if the string 0 OR 1=1 is given to
the above described code as the modifier value? In this case, a library parser will
parse the string correctly and build a corresponding expression tree, comparing
an argument with zero and the logic IF of the comparison result with the result of
the one by one comparison, which finally will result in TRUE irrespective of the
argument transferred in the expression. In other words, the LINQ Injection attack
will be conducted.

Let’s say it in a formal manner: LINQ Injection (short LINQi) is an attack method
bypassing security mechanisms, when parameters transferred to an application are
modified in such a way so that to affect the expression tree structure executed in
the LINQ query application. The attack is conducted via all possible methods of
interaction with an application subject to the following conditions:

a) Dynamic construction of LINQ expression trees for time execution using the tools
of System.Linq.Dynamic or a similar library is implemented in the application.

b) LINQ expression trees are constructed on the basis of unvalidated input data.

Due to several restrictions stipulated by static typing of the CLR data structures
and peculiarities of internal representation of the LINQ expression trees, as well
as to restrictions posed by System.Linq.Dynamic, detection and exploitation of the
vulnerability is usually complicated by the following factors:

a) An attacker can change expressions only of that query, in which unvalidated
input data was used. In other words, in a query such as from Users where
Name=“{0}” select Id, an attacker will be able to affect only the expression
related to the operator where. An attacker cannot interrupt an initial query,
include a subquery to an expression, or impact other operators’ execution in
any way. The attack is possible in the expressions of the following operators:
where, select, orderby, groupby, because expressions can be calculated only
in these operators of System.Linq.Dynamic.

var result = from item in itemsList
 where item.field1 % 2 == 0
 orderby item.field2 descending
 select new { item.field2, item.field3 };

var result = itemsList
 .Where(x => x.field1 % 2 == 0)
 .Select(x => new { x.field2, x.field3 })
 .OrderByDescending(x => x.field2);

Expression.Lambda<Predicate<int>>(
 Expression.Equal(
 Expression.Modulo(
 parameterN,
 Expression.Constant(2)
),
 Expression.Constant(0)
),
 parameterN);

LISTING 14

LISTING 15

LISTING 16

var modifier = "0";
var result = itemsList
 .Where("field1 % 2 == " + modifier)
 .Select(x => new { x.field2, x.field3 })
 .OrderByDescending(x => x.field2);

LISTING 17

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

64 65HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB

b) An attacker can use the restricted set of classes from a standard library, as well
as fields and properties of queried object types inside a vulnerable expression.

Therefore, injecting arbitrary logic for expression calculation is not always possible
and depends on the details of expression implementation. However, the vulnerability
can be used to achieve the following aims:

a) obtaining access to the data, unavailable in case an application runs in a
normal mode (for instance, a modified LINQ expression in the operator select,
performing a query as part of authentication procedure, can return hashed
user passwords);

b) bypassing authentication and/or authorization mechanisms by changing
the relevant query expression in such a way so that to make it return TRUE
irrespective of a transferred password or user role;

c) implementing threats of the Abuse of Functionality class by means of addressing
the stateful fields of selected objects from a query;

d) implementing threats of the Denial of Service class by means of transferring a
huge number of included expressions or expressions generating a huge volume
of data, which in any case will result in the process abortion with the system
exception in the CLR environment.

Moreover, due to the fact that System.Linq.Dynamic and some of its analogues
are supplied in source codes, a developer can modify them to enlarge the white
list of validated types or disable control over the list, which may make remote
code execution possible as part of LINQ Injection. Therefore, this vulnerability
corresponds to the 9 (AV:N/AC:L/Au:N/C:P/I:P/A:C) and in some cases to the 10 in
terms of CVSS v. 2.

This vulnerability is detected in a way similar to SQL Injection and consists
in sending of the LINQ expression fragments aiming at their injection into an
initial query.

1 && 1=1
a' && 1=1
A" && 1=1
1) && 1=1
a') && 1=1
A") && 1=1
a' && '1'='1
A" && "1"="1
A" && string.Empty="
a') && ('1'='1
A") && ("1"="1
A") && (string.Empty="
1)) && 1=1
and etc.

Analyzing the source code, pay attention to the use of string concatenation
operations, format strings, or the calls of StringBuilder methods in all code blocks
using the tools of LINQ query dynamic building.

CONCLUSION
So despite the statistics statement that web applications are usually well protected,
due to the ASP.NET design, strict typing, and embedded security mechanisms, not
each ASP.NET application can be treated as secure. The vulnerabilities of frameworks
and platforms, examples of which have been considered above, vulnerabilities
allowed at the web application level, some classes of which are unique for this
stack of web technologies, have influence as well. This only proves the idea that
any specific feature of a researched or developed application and its environment
should be taken into account. ¶

W
eb

 A
pp

lic
ati

on
 Se

cu
rit

y
W

eb Application Security

HITB | ISSUE 009 | NOVEMBER 2012 NOVEMBER 2012 | ISSUE 009 | HITB66 67

Ne
tw

or
k S

ec
ur

ity
Network Security

V
ega is a Java-based open-source platform for testing the security of web
applications developed by Montreal-based Subgraph and released under
the Eclipse Public License (EPL) 1.0. Vega is GUI-based and runs on OS X,
Linux, and Windows. Binary versions of Vega can be downloaded from the

Subgraph website at http://www.subgraph.com. A 1.0 release is still forthcoming
as of the writing of this article, however users interested in building the latest
Vega, which includes some features covered in this article, and more, can obtain
the source code from our repository, hosted at http://github.com/subgraph/
Vega (or, for even more bleeding edge, my personal repo at http://github.com/
dma/Vega). See appendix for build instructions. Users can also contact us by
e-mail or IRC (#subgraph on freenode) to obtain a pre-built package outside of
our release schedule.

A Brief Introduction to

David Mirza Ahmad

NOVEMBER 2012 | ISSUE 009 | HITB68 69

SCANNER
The Vega automated scanner crawls web applications looking for injection points,
and then runs Javascript modules to detect vulnerabilities. The easiest way to get
started is just to click the target icon to start a new scan.

The target scope specified by the user should include all base paths that will be
crawled and scanned (e.g. http://www.example.com/myapp as a target scope
would mean that Vega crawls and scans everything within /myapp). Vega’s target
scope is strictly interpreted, so it should be noted that if the target is a file, such
as http://www.example.com/myapp/index2.php, then the user may be required
to add an additional target scope for e.g./myapp should they wish to scan other
resources related to the application. The target scope dialog also allows the user
to add path patterns that are to be excluded. When scanning in an authenticated
session, it is recommended that the application logout mechanism be added as an
exclusion, so that the Vega crawler does not log itself out.

Once the target scope has been input, the user can select the injection and response
processing modules they wish to run. Each of the modules in the list correspond to
a Javascript file. For Linux users, these scripts will be in the scripts/subdirectories.
Injection modules run on each injection point identified by the crawler. The modules
can fuzz these injection points by submitting altered requests. This can be done
in an abstracted way - the module developer does not necessarily need to know
much about the parameter being fuzzed - it is all handled by Vega. The response
processing modules run on each response that is received, essentially grepping for
interesting patterns.

The Vega platform has two primary modes of operation: as an automated
vulnerability scanner, and as an intercepting/scanning proxy for manual and semi-
automated hacking and verification of scanner discoveries. Vega includes a number
of generalized vulnerability checks for common classes of security bugs such as
cross-site scripting and SQL injection. The real power of Vega is in its extensibility:
the scripting language for these vulnerability checks is Javascript, giving anyone
the power to extend Vega by modifying the included modules or creating new ones.
Vega has the Mozilla Rhino Javascript interpreter built-in and a rich API supporting
the development of all kinds of possible modules - vulnerability checks and beyond.

Vega is based on Equinox OSGi and Eclipse RCP, the modular framework and UI toolkit
underlying the Eclipse IDE. Vega also includes Apache HC, jsoup and db4o.

BASICS
The two core modes of operation for Vega are as an automated scanner and as an
intercepting/scanning proxy. The Vega user interface is split into two “perspectives”:
one for the scanner and one for the proxy. The parts of each interface can be moved
around, and to restore them to the original layout the user can just select the “Reset
Perspective” menu option.

Vega saves state in a data store known as a “workspace”. The workspace can be reset
by selecting “Reset Workspace” in the “File” menu. The workspace can be saved by
backing up the “model.db” file. On Linux systems, this file will be in a sub-directory
within ~/.vega/workspaces.

The scanner UI is the default perspective presented to the user when Vega is run for
the first time.

HITB | ISSUE 009 | NOVEMBER 2012

Ne
tw

or
k S

ec
ur

ity
Network Security

The Vega automated scanner

Vulnerability detection modules - each is a Javascript file located in the scripts/
subdirectoy tree

NOVEMBER 2012 | ISSUE 009 | HITB70 71

Clicking on the ‘request’ link in an alert will slide open the HTTP message viewer,
revealing the saved request and response pair.

REQUEST VIEWER
Reviewing the saved request and response pair allows for inspection and verification
of the vulnerability. The relevant content (such as an XSS tag) is highlighted in the
HTTP message viewer for rapid identification of the module detection pattern.

The message viewer supports rendering of some complex structured data - this is an
area of innovation planned for future versions of Vega. Presently the Vega message
viewer supports rendering of syntax highlighted markup, binary images, and binary
data in hexadecimal representation.

It is also possible to modify and replay the request to further explore the possible
finding. To do this, just select the corresponding row in the request log (it should
already be highlighted) and right click - there will be a ‘replay request’ option in the
context menu.

A request editor tab will open in the Scan Info view when the user has selected a
request to replay. The request can then be edited and replayed as many times as the
user desires.

PROXY
The proxy perspective can be accessed by clicking the Proxy button at the top right.

The Vega intercepting/attacking proxy is to be used with an HTTP client such as a
web browser. The proxy is situated between the client and the server and allows
for observation and manipulation of client-server interaction. The Vega proxy also
allows for fuzzing based on proxy interactions, providing better code coverage and

It is also possible for the user to attach an identity profile to the scan. Identities
allow for authentication credentials to be supplied for Vega to log into an
application prior to scanning. Vega currently supports four authentication methods:
basic, digest, NTLM, and macro. Macro authentication uses request replaying to
authenticate using forms. To do this, the user must first log into the application
through the Vega proxy so that the authentication request is captured and stored.
The user can then attach the request to a macro and use it as part of an identity for
Vega to automatically login.

Once the modules have been selected, the user can click ‘next’ to add custom
cookies or specify parameters that will not be fuzzed. Clicking ‘Finish’ will end the
scan configuration and start the crawler.

The progress of a running scan is indicated in the ‘Scan Info’ tab of the main scanner
view. The progress bar will adjust in size as the recursive crawler discovers more of
the application structure. Vega sends lots of requests, including many as probes:
to identify 404 pages and whether resources are files or directories. Each page is
also fingerprinted by Vega for heuristic page comparisons, something many of the
vulnerability detection modules rely on.

Vega’s findings are summarized in a table in the Scan Info view. Each finding listed
will have a correpsonding alert with more detailed information, including a link to
saved request and response pair associated with the finding. To access one of these
detailed alerts, just expand the tree of findings in the Scan Alerts view.

SCAN ALERTS
Vega vulnerability alerts are generated by the attack modules. Each type of alert is
based on an XML template file located in the xml/directory. Vega assembles the alert
using static content from the XML template file and dynamic content from the module.

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | ISSUE 009 | NOVEMBER 2012

Vulnerability alert

HTTP message viewer with positive vulnerability detection highlighted

HITB | ISSUE 009 | NOVEMBER 201272

semi-automated security testing capability.

The Vega proxy listens on localhost, with a default port of 8888. To use the proxy,
the application must be configured for proxy support. Firefox is recommended, as it
maintains its own proxy settings.

The proxy can be enabled by clicking the green “play” button in the top left corner,
and stopped by clicking the red stop icon.

REQUEST TABLE
All requests and responses that pass through the proxy are stored in a database. The
contents can be viewed in the request log, of which more than one can be created,
each with specific filters applied. Filtering the request log is an important feature -
there will often be far too many requests to navigate effectively, especially after the
proxy or scanner have been in use for some time, or if all scanner requests are being
logged (an optional feature disabled by default). The request log can be filtered
by criteria such as regexp matching paths, method (e.g. POST), and status code.
Clicking the “recycle” icon will reset the filter. It is possible to create additional
request tables to which other filters can be applied by clicking on the “Open New
Request Viewer” icon above the request list.

Right-clicking a row in the request list will bring up a context menu with options such
as replaying the request and tagging it. Requests can be tagged and assigned colors
if they are of specific interest.

CONFIGURING INTERCEPTOR RULES
The Vega proxy permits active interception of messages passing through it. When
Vega intercepts a request or response, it is held by the proxy until the user chooses
what to do with it: to drop it or forward it. The user can choose to modify a message
before it is forwarded. Interception can be configured like breakpoints, so that only
specific types of requests are intercepted while all others pass through. Criteria for
interceptor rules include the path, method, hostname, and more.

When a message is intercepted, a notification will be present in the status area at the

bottom of the Vega UI. Clicking this will take the user to the pending HTTP message. It
is also possible to forward or drop a group of requests or responses at once by selecting
them in the proxy status tab, which will list the queue of pending messages.

SSL
Observing and manipulating client-server communication over HTTPS requires Vega
to perform active man-in-the-middle SSL interception. For each client connection
to an HTTPS server, the proxy generates a certificate. A regular browser will warn
(correctly) on this invalid certificate. To avoid this, a CA certificate generated by
Vega can be installed in the certificate store. This certificate can be retrieved by
visiting a magic URI through the proxy: http://vega/ca.crt. Visiting this link with
Firefox will present the user with a dialog to import the certificate directly.

RESPONSE PROCESSING MODULES
Vega runs response processing modules on all responses that pass through the proxy.
The “tool” icon to the right of the proxy “stop” icon brings up a list of the response
processing modules selected for use with the proxy. Alerts triggered by these modules
during proxy usage are listed in Alerts view, which can be opened by clicking the ‘i’
icon in the bottom left corner of the proxy perspective.

PROXY SCANNING
One of the major new features for Vega 1.0 is the proxy scanner. Vega now allows for
semi-automated web security testing while the client is interacting with the target
application through the proxy. This permits better code coverage: the proxy sees all
requests hitting the server, including AJAX/Flash/Java RPCs. When proxy scanning
is enabled, the Vega proxy will extract all parameters observed in client-server
communication with the target server and then fuzz them. To try the Vega proxy
scanner, just create a target scope for the proxy and then enable proxy scanning.

The icon in the lower left will blink when the proxy scanner identifies a vulnerability
such as cross-site scripting or SQL injection. Clicking on the icon will slide open the
alerts view.

EXTENDING VEGA
Vega modules are written in Javascript and can be used when placed in the correct
directory - restarting Vega should not be necessary. Modules can also be modified

Ne
tw

or
k S

ec
ur

ity

NOVEMBER 2012 | ISSUE 009 | HITB 73

Network Security

Vega intercepting/scanning proxy

Intercepted HTTP message

NOVEMBER 2012 | ISSUE 009 | HITB74 75

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | ISSUE 009 | NOVEMBER 2012

Creating a target scope for the proxy scanner

Proxy scanner alert indicator blinks when the proxy scanner finds a vulnerability

Enabling proxy scanning

Proxy alerts view

without requiring a restart of Vega. On Linux systems, this directory is in scripts/
scanner/modules. There are two additional sub-directories, injection/and response,
used for storing the two respective types of modules.

The Vega API is quite rich. For example, JQuery is included and can be used to analyze
DOM elements. We recommend that interested users review some of the injection
and response processing modules included with Vega for examples and inspiration.

See the Vega support website at https://support.subgraph.com for more information
on developing Vega modules and the Vega API.

Directory traversal module, written in Javascript

HITB Magazine is currently seeking submissions for our next issue. If you have
something interesting to write, please drop us an email at:
editorial@hackinthebox.org

* Next generation attacks and exploits
* Apple / OS X security vulnerabilities
* SS7/Backbone telephony networks
* VoIP security
* Data Recovery, Forensics and Incident Response
* HSDPA / CDMA Security / WIMAX Security
* Network Protocol and Analysis
* Smart Card and Physical Security

* WLAN, GPS, HAM Radio, Satellite, RFID and
Bluetooth Security

* Analysis of malicious code
* Applications of cryptographic techniques
* Analysis of attacks against networks and machines
* File system security
* Side Channel Analysis of Hardware Devices
* Cloud Security & Exploit Analysis

Topics of interest include, but are not limited to the following:

Please Note: We do not accept product or vendor related pitches. If your article involves an advertisement for a new product or
service your company is offering, please do not submit.

HITB | ISSUE 009 | NOVEMBER 201276

CONCLUSION
Vega is a newcomer to the space with a lot of exciting potential and we greatly
value feedback from those who have tried Vega. We can be reached via twitter (@
subgraph), e-mail (info@subgraph.com) or on IRC, in #subgraph on freenode.

APPENDIX: BUILDING VEGA
Vega can be compiled by simply running ‘ant’. It should be noted that build script
will download dependencies from a Subgraph server.

Building the newest version of Vega:

$ git clone git://github.com/dma/Vega.git
$ cd Vega
$ git checkout develop
$ ant

After a successful build, the binaries will be in:

$ ls build/stage/I.VegaBuild/

VegaBuild-linux.gtk.x86.zip VegaBuild-macosx.cocoa.x86_64.zip compilelogs/
VegaBuild-linux.gtk.x86_64.zip VegaBuild-win32.win32.x86.zip
VegaBuild-macosx.cocoa.x86.zip VegaBuild-win32.win32.x86_64.zip

A walkthrough for building Vega in Eclipse is available on https://support.
subgraph.com. ¶

Ne
tw

or
k S

ec
ur

ity

CONTACT US

HITB Magazine
Hack in The Box (M) Sdn. Bhd.

Suite 26.3, Level 26, Menara IMC,
No. 8 Jalan Sultan Ismail,

50250 Kuala Lumpur,
Malaysia

Tel: +603-20394724
Fax: +603-20318359

Email: media@hackinthebox.org

