
Issue 12/June 2021

EXPLOITING QSEE, 
The Raelize Way! >> 68 

INSECURE LINK: 
Security Analysis and 

Practical Attacks of 
LPWAN >> 50

How I Found 16 Microsoft 
Office Excel Vulnerabilities

in 6 Months >> 85

MOVE OVER ROP: 
Towards a Practical
Approach to Jump
Oriented Programming
>> 120

Featuring 
WHITE PAPERS 
from
HITB2021AMS!

X-IN-THE-MIDDLE:
Attacking Fast Charging 
Piles and Electric 
Vehicles >> 10



 iiiii

HITBMag | June 2021  

ED
IT

OR
IA

L

H
ey guys - hope you’re all doing well despite the continued COVID 
madness that’s still keeping us locked at home. We were hoping 
we’d be able to have an in-person conference in Amsterdam in 
May this year but it also looks like our upcoming Singapore event 

in August is going to have to go fully virtual as well. 

While we wait for vaccine rollouts and a return to some kind of normalcy 
though, we’ve got a new edition of the HITB magazine to share with you 
featuring whitepapers by #HITB2021AMS speakers! We’ve also revamped 
the HITB Magazine landing page (https://magazine.hitb.org/) and given it a 
lemony fresh skin. If you’re interested in submitting your own articles to our 
next issue, send your proposals to us at editorial@hackinthebox.org (Note: 
We only publish articles that are technical, so please don’t send us your 
‘opinion pieces’.) 

Despite our Singapore event being forced to go into virtual mode, we are still 
working on an in-person HITB+ CyberWeek in UAE in November. 

Taking place from the 21st till the 25th of November at the Abu Dhabi National 
Convention Center, CyberWeek 2021 will feature our usual deep-knowledge 
tracks, hands-on labs, and technical trainings but also an exclusive C-level 
business track for governments as well as a combined .edu and PRO Capture 
The Flag contest! Don’t worry if you can’t make it to the UAE in person though 
- the event is designed to be hybrid and most of the talks, labs, and content 
will be recorded or live streamed. 

On behalf of the HITB Editorial Team, stay safe, get your vaccines (if you 
haven’t already), and hopefully we’ll be chilling with you guys in November 
at CyberWeek!  

- The Usual HITB Suspects

https://magazine.hitb.org/
mailto:editorial@hackinthebox.org
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A DISASTER 
CAUSED 

BY A BUG: 
A black box escape of 

QEMU based on USB device
Lingni Kong and Yanyu Zhang

ABSTRACT
Qemu is a machine emulator,  dedicated to providing emulation of 
different devices for cloud environments. Many exploits targeting 
Qemu based on different vulnerabilities have been developed and 
shown in public, yet all of them need some information about the 
binary file. In this paper, we analyze the cause of CVE-2020-14364, 
which is a memory out-of-bounds read and write vulnerability in the 
USB device of Qemu, and introduce a new approach of realizing the 
exploit without additional information based on this vulnerability.



 32

HITBMag | June 2021  

INTRODUCTION

When virtualization technology acts 

as the core of cloud computing today, 

virtualization software including Qemu-

KVM, Hyper-V, Xen, Virtualbox, VMware 

ESXi, equips on public and private clouds 

widespread. 

As the most popular open-source cloud 

architecture, OpenStack uses Qemu-

KVM as the virtualization implementation 

of its computing nodes. Therefore, 

the threat of vulnerabilities in Qemu is 

very noteworthy for the cloud platform 

security.

Although Redhat fixes a large number 

of vulnerabilities in Qemu every year, 

most of them will not affect OpenStack 

because they just exploit components 

not provided by OpenStack. For example, 

the vulnerabilities CVE-2015-5165 and 

CVE-2015-7504 [1] presented at the 

security conference HITB. 

Even some serious vulnerabilities 

affect OpenStack, such as CVE-2015-

3456(called the venom vulnerability [2].) 

which is a heap overflow vulnerability in 

the virtual floppy disk device. However, 

no one is able to display a complete 

exploit or relevant idea publicly.

As the above mentioned, there are only 

a few vulnerabilities that can be used 

to escape from the OpenStack virtual 

machine. It’s more challenging to develop 

an exploit for virtual machine escape in 

the public cloud since it is difficult for an 

attacker to obtain the key information 

such as Qemu version, binary files, and 

so on.

Thus, when we view as an attacker 

targeted on public cloud instruments, 

not only considering the exploitable of 

vulnerability or stability of the method, 

it’s more vital to escape the affected 

virtual machine without any additional 

information.

In this paper, we briefly introduce the 

Qemu-KVM architecture at first, then we 

interpret a new conception: black box 

escape. After analyzing a vulnerability 

(CVE-2020-14364) impacted cloud 

security profoundly, we present our 

approach to achieving a black box 

escape of a Qemu virtual machine based 

on this vulnerability. Finally, we give some 

inspirations via our experience.

BACKGROUND

Qemu-KVM

Qemu  is a machine emulator that can 

simulate different architectures or a 

complete virtual machine including 

processor virtualization [3], memory 

virtualization, and I/O device virtualization. 

What’s more, Qemu uses different 

accelerators to accelerate the simulation 

process, and KVM is one of them. KVM is 

responsible for realizing the virtualization 

of CPU and memory in the kernel mode 

by loading new modules on the Linux 

kernel [5]. 

So, while the system is initializing 

and simulating, Qemu only assure to 

implement the virtual hardware in the 

user mode. The architecture of Qemu-

KVM improves the performance of 

system virtualization significantly.

Virtual machine escape

The significance of virtual machines is 

to serve an isolating virtual operating 

environment. And its isolation 

mechanism makes sure that different 

virtual machines do not interfere with 

each other or when the virtual machines 

share host resources, their operations 

will not disrupt host OS.

Nevertheless, virtual machine escape 

can be exploited to execute malicious 

code, which makes the program break 

away from the virtual machine [4], even 

attack the host OS, or obtain the host’s 

related permissions.Due to the privileged 

status of the host OS, the escape of the 

virtual machine could lead to a serious 

consequence from attacking the host OS 

and collapse the entire security system. 

Therefore, the threat of virtual machine 

escape to system security is self-evident.

The virtual machine escape attack can 

be traced to 2007, but the relatively 

au-hortative concept was proposed by 

Ken Owens until 2009. From the record 

and analysis by CVE corporation, the 

vulnerability of virtual machine escape 

still increases year by year. 

Nowadays, virtual machine escape 

vulnerabilities have been discovered 

from all major virtualization software 

platforms: As early as 2009, a vulnerability 

in SVGA devices on VMware virtualization 

platform can realize virtual machine 

escape; In 2016, researchers achieved 

Xen escape through a vulnerability in 

virtual memory management.

Black box escape is a new conception 

we propose after summarizing  the 

characteristics of our exploit approach. 

In fact, ’black box’ in the conception is 

similar to the sense of black-box testing: 

black-box testing can test software 

functions without getting the internal 

structure and code of the program. 

Similarly, black box escape means 

that an attacker can escape from a 

virtual machine without binary symbol 

information. As compared to the normal 

methods which need load address and 

system address from Glibc, black box 

escape makes attacking public cloud 

directly possible.

Qemu USB support

Before analyzing the vulnerability CVE-

2020-14364, a general comprehension 

of how does USB data transfer and how 

does Qemu virtual device process the 

USB data packets is necessary.

In the Linux kernel, the driver sends the 

USB data and the structure containing 

information to the USB device by parsing 

the urb (USB request block) structure. 

The related structure plays a role to 

describe the specific information of data, 

including the length, type, and address 

of the USB device for sending or reading 

the data on the bus.

The corresponding controllers of usb1.0, 

usb2.0, and usb3.0 are all simulated by 

Qemu. The driver in guest OS sends 

USB packets by reading and writing the 

registers of the corresponding device. 

For example, we can send a UHCI_

TD structure to the device by reading 

and writing the registers of the usb1.0 

default controller UHCI. The UHCI_TD 

structure describes the type, length, and 

other information of the data we want to 

transmit.

Libvirt is a toolkit to manage virtualization 

platforms, which is used in OpenStack. 

For each virtual machine created by 

default, libvirt provides a USB-tablet 

device on the usb1.0 or usb2.0 bus to 
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solve the bug of mouse synchronization. 

The connection method of the USB 

device will not have any impact on our 

exploit since the unique position of 

CVE-2020-14364. So, exploit can easily 

adapt to platforms based on different 

connection methods by only modifying 

the sending method of USB packets.

VULNERABILITY

Under normal circumstances, the driver 

sends and receives USB packets to the 

control endpoint as figure 1 shows:

1. The driver sends an 8-byte 

TOKEN_SETUP type data 

packet. The front six bytes 

contain control information, 

and the last two bytes are 

combined to show the length 

of the data the driver wants to 

read or write.

2. When the driver wants to read 

the control information of some 

USB devices, the driver will 

send another TOKEN_IN USB 

packet matching the length 

to read the corresponding 

control information.

3. When the driver wants to set 

the control information of 

some USB devices, the driver 

will send another TOKEN_

OUT USB packet matching the 

length to set the corresponding 

control information.

CVE-2020-14364 is a memory out-of-

bounds read and write vulnerability. It 

exists in function do_token_setup in 

the hw/usb/core.c file. This function will 

process the USB SETUP packet sent to 

the control endpoint.

As shown in Figure 2 below, the sixth 

and seventh bytes of setup data are 

combined in a 16-bit integer, and the 

integer is assigned to the setup_len in 

the USBDevice structure. 

When the setup_len is too large then 

make the check fail, do_token_setup will 

exit directly without clearing the setup_

len value. This causes the setup_len of 

USBDevice illegal when processing the 

next data packet.

So it’s possible to construct this error 

process as memory out-of-bounds read 

and write as Figure 3 shows. 

1. The driver sends an 8-byte 
TOKEN_SETUP type data 
packet, which indi-cates that 
the driver wants to read the 
controlw information of the 
USB device. After the execution 
of do_token_setup, the setup_
state of the USBDevice will be 
set to SETUP_STATE_DATA. 

2. The drive sends an 8 bits 
TOKEN_SETUP USB packet 
again. Compared with the 
content sent at the first 
time, only the last two bytes 
representing the length are 
modified, which will trigger the 
error we mentioned above: 
the function do_token_setup 
will set setup_len to an illegal 
size before exiting, meanwhile 
setup_state is still SETUP_
STATE_DATA.

3. At this time, as Figure 4 shows, 
if we send a large number of 
TOKEN_OUT USB packet, there 
will be an out-of-bound write of 
data_buf in function do_token_
out.

In the same way, we can perform an 

array reading out-of-bounds operation 

on data_buf through similar operations:

1. The driver sends an 8-byte 
TOKEN_SETUP type data 
packet, which indicates that 
the driver wants to read the 
control information of the USB 
device. After the execution 
of do_token_setup ends, the 
setup_state of the USBDevice 
will be set to SETUP_STATE_
DATA.

Figure 2: A code snippet of do_token_setup() 

Figure 1: A set of normal data packets for 

reading and writing USB control endpoint.

Figure 3: A set of data packets used to trigger 

out-of-bounds read and write vulnerabilities.

Figure 4: A code snippet of do_token_in() and 

do_token_out().



 76

HITBMag | June 2021  

2. The driver sends an 8-byte 
TOKEN_SETUP type data 
packet again. Compared with 
the content sent for the first 
time, only the last two bytes 
representing the length are 
modified, which triggers the 
error we mentioned above. 
In this way, when exiting the 
do_token_setup function, do_
token_setup will set the setup_
len to an illegal size while the 
setup_state is still SETUP_
STATE_DATA.

3. At this time, as Figure 4 shows, 
if we send a large number of 
TOKEN_IN USB packet, there 
will be an out-of-bound read of 
data_buf in function do_token_
in.

We can use the above two methods to 

convert the bug into a continuous out-

of-bounds read and write to data_buf of 

USBDevice.

BLACK BOX ESCAPE

Combined the vulnerability with structure 

of the USBDevice, we build two primitives:

1. Arbitrary offset memory read 

and write primitive after data_

buf. Based on the vulnerability 

triggering method mentioned 

above, we are able to do 

continuously out-of-bound 

read and write to the data_buf 

of USBDevice. As Figure 5 

shows, the related variables 

setup_state, setup_len and 

setup_index used for out-of- 

bounds read and write are all 

after data_buf. We build this 

primitive by triggering this 

vulnerability and modifying 

these three variables.

2. Arbitrary read primitive. The 

driver gets the vendor id and 

product id of the USB device 

by sending a series of packets. 

As shown in Figure 6, these 

two types of id are stored in 

the USBDesc structure, which 

is pointed to by usb_desc of 

USBDevice. The usb_desc 

structure pointer is located at 

a fixed offset after data_buf. 

Therefore, we construct an 

arbitrary address reading 

primitive by changing the usb_

desc structure pointer to the 

memory address we want to 

read, and reading the vendor 

id and product id of the USB 

device through a series of 

packets.

By using these two primitives, we realize black box escape through two steps:

1. Libc relevant address leakage. In the USBDevice, different endpoints are de-

scribed by USBEndpoint. As shown in Figure 7 (below), USBEndpoint has a 

pointer pointed to the USBDevice and it’s also behind the memory of data_

buf. There is a DeviceS-tate structure stored at the head of the USBDevice 

which has many function pointers. ObjectFree is one of them which is used to 

release the Object structure. It points to the free function of a certain library.  

 

Since all final implementation of free for all library functions is in Glibc 

of Linux and the free implementation of other libraries is just a jump 

instruction in the plt segment, we get the address of free of Glibc by 

repeating parsing the jump instruction and reading the GOT table.  

 

Once we get the address of free of Glibc, we search the memory and 

get the address of the system of Glibc as dynELF [6] does. We search for 

the location of the Glibc ELF head by matching the magic number of the 

ELF head first. After getting it, we find the system string by traversing 

the .dynstr section in the ELF and read the same offset of the .dyn section 

to get the offset of the system function. After pulsing the base address of 

Glibc, we finally get the address of the system function in the memory. 

 

Figure 6: Relationships between USBDevice and USBDesc.

Figure 7: Relationships between the structures we used to leak the address of free 

functionFigure 5: Some members of USBDevice.
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2. Hijack control flow. The driver set the free time of usb-tablet through SET_IDLE 
control command. The realization of this function in Qemu is to set a timer 
and call the hid_idle_timer function after the timeout. The hid_idle_timer 
function will eventually use a function pointer of HIDState to handle the event.   
 
As shown in Figure 8, the HIDState structure is a part of USBHIDState, and 
the offset relative to the data_buf array is fixed, so we hijack the control 
flow by overwriting the event function pointer in the HIDState structure. 
We are also able to control the first argument of the function pointer by 
overwriting the start position of the HIDState structure. Finally, we send 
SET_IDLE control command to trigger the call of the event function.

DISCUSSION

Impact

The vulnerability CVE-2020-14364 was independently reported to RedHat by 360 security 

researcher Xiao Wei and Qi Anxin security researcher Zhang Ziming. Redhat fixed the 

vulnerability on August 24, 2020. This vulnerability affects all versions of Qemu between 

1.0 and 5.1.0. Triggering the vulnerability requires at least one USB device connected to 

the virtual machine.

Defence

It’s of concern to deploy a sandbox on Qemu process for defending CVE-2020-14364.

Figure 8: Relationships between the structures we used to hijack control flow.

CONCLUSION

In the past few years, there have been some high-

quality vulnerabilities in Qemu. But currently, there is no 

vulnerability that can achieve a black box escape Qemu 

virtual machine through a single vulnerability like CVE-

2020-14364. What’s more concerning is that the range 

of versions affected by the vulnerability is very large, and 

for different versions, the method of exploitation does not 

require any modification at all.

For cloud vendors, this vulnerability is an important 

warning. The emergence of black box escapes means that 

some vulnerabilities can pose serious threats even in the 

absence of binary files. It also means that it is necessary to 

set a certain sandbox strategy for the Qemu process. After 

all, we should never put all eggs in a basket. □
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INTRODUCTION 
EV CHARGING

The rapid expansion of the electric vehicle market has promoted the construction of 

charging infrastructure.DC charging has higher charging power, and in order to confirm 

the charging voltage and current, the electric vehicle and the charging station will 

communicate after being connected.

 

-IN-THE-MIDDLE
Attacking Fast Charging Piles and 

Electric Vehicles 

Wu HuiYu and Li YuXiang 

Figure 1: AC VS DC Charging

X
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There are different charging standards in different country. For example, all electric cars 

in China must support the GB/T standard. Electric car use CAN-BUS to communicate with 

charging plies, while in most parts of Europe, CCS standards are used, and Electric cars 

and charging piles use PLC to communicate. with the exception of Tesla, who has its own 

Supercharger network all over the world, and it uses a private communication protocol.

 

In addition, we also want to talk about why we chose to study the electric charging 

security. The main reason is that we found Electric vehicles infrastructure is making 

progress towards a more intelligent, more high-power direction. 

The construction of charging stations is accelerating all over the world, but there is little 

research on the security of electric vehicle infrastructure.

ATTACK SURFACE ANALYSIS

First of all, EV Charging piles are also Internet of things devices, which usually have built-

in intelligent systems and operating interfaces, while facing security risks in hardware, 

systems, cloud services and communications. 

But our focus is on the security of the communication protocol between the electric 

vehicle and the charging pile.This will be a new and interesting exploration.

The following picture shows the process of charging a car at a DC charging station, 

Charge controller communicates with BMS before charging to confirm parameters such 

as charging voltage and current, which involves a lot of data exchange. 

Table 1 Charging Standards

So, if we can implement a man-in-the-middle attack, we might be able to

1. Find Vulnerabilities in BMS and Charge controller through Fuzzing;

2. Analyze private protocols and bypass identity authentication mechanism; 

3. Damage the car by tampering with the charging voltage and current.

WHAT IS “X-IN-THE-MIDDLE” ATTACK?

In order to conduct security testing safely and conveniently, we have designed a tool 

called XCharger. The core of XCharger is a data processing terminal based on STM32MCU 

or raspberrypi, which isolates CAN-BUS messages from BMS and charging posts. All 

CAN-BUS messages can not be transmitted normally until they are transferred through 

XCharger, which allows us to monitoring, fuzzing and tampering CAN-BUS messages in 

the whole charging process.

Another feature is that we designed the whole tool into a 20-inch suitcase, which has 

two charging sockets, one is connected to the charging pile, the other is connected to 

the electric vehicle, the high-voltage circuit is directly connected, and only four CAN-

BUS communication interfaces are exported to ensure high-voltage safety.

Figure 2 DC Charging’s Arch

Figure 3 X-in-the-Middle Attack
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When we do security research, the most 

important thing is It should be able to 

ensure that personal safety and vehicle 

safety are not threatened in the test. DC 

charging can reach a voltage of up to 750V 

or a current of 120A. Once a short circuit 

occurs, it is very dangerous for the tester 

and the car. 

Secondly, we hope that the attack 

equipment should be highly compatible, 

suitable for all electric vehicles with 

Chinese DC charging standard. Instead of 

requiring customization for each brand of 

electric cars or charging piles. 

We also found CAN-BUS communication 

requires low latency, and man-in-the-

middle attacks need to ensure that frames 

will not be drop. (Fig 4)

We rented a tesla model3 for testing and 

found that its charging port exported the 

CAN-BUS bus interface with a separate plug. 

This meant we might be able to disconnect 

the original connection in the trunk to achieve 

a man-in-the-middle attack, but the problem 

is that this may lead to line damage, which 

does not seem suitable for such an operation 

on a rented vehicle. (Fig 5, 6)

Figure 4: GB/T DC Charging Gun

Figure 6: Tesla Model3’s Charging Model

A perfect solution we have 

is the equipment shown 

(Fig 7).  You can see that 

it has two charging ports, 

one end is connected to 

the electric vehicle, the 

other end is connected to 

the charging connector, 

the CAN-BUS interface 

of the BMS of the electric 

vehicle, and the CAN-BUS 

interface of the charging 

pile are all exported on 

the surface. 

Simultaneously, we have 

customized a dual-plug charging 

cable (Fig 8) to connect the 

equipment and the car, this 

equipment is designed by us 

and made by professional 

manufacturers in Shenzhen, China, 

which can ensure the safety of 

high-voltage power use.

There are many open source tools 

available for CAN-BUS’ monitoring, 

fuzzing and tampering, to use 

both raspberrypi and two-way 

CAN extension boards. We can 

use Python to develop a testing 

framework on the built-in ubuntu 

system. Due to the limited time, we 

will release more details and code 

in the future.

Figure 5: Tesla Model3’s Charging Model’s data 

cable

Figure 8 Dual-plug charging cable

Figure 7 XCharger Kit
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We use XCharger to do a quick test on the Tesla supercharger in China, and the test 

results verify that the device can capture the message successfully, but we do not have 

any more tests because we do not have the Charging port’s DBC file to translate the CAN-

BUS message.

We found that some of the messages in the CAN-BUS communication between 

SuperCharger and Tesla Model3 use private protocols. Some messages conform to the 

GB/T 27930 standard. When testing with Model3, there is a high probability that it will not 

be able to charge successfully. The reason is still being analyzed. So if you want to reverse 

the complete protocol, it may be better to analyze the firmware of BMS or SuperCharger.

Figure 9  RaspberryPi and two-way CAN extension boards.

Figure 10 Quick test on the Tesla Supercharger

HOW TO ATTACK “PLUG AND CHARGE”

In addition to the Tesla Supercharger, we spend more time in public charging stations. 

Plug and Charge is a new way of automating payment for EV charging. Users do not 

need to swipe their cards or scan codes, just connect the charging pile to the vehicle 

charging port to automatically complete identity authentication and payment.

For electric vehicle companies that build their own charging piles, such as Tesla, private 

communication and authentication protocols can be used to ensure the security of “Plug 

and Charge”. 

Considering compatibility and cost, some public charging station operators have chosen 

to use VIN to complete vehicle identity authentication on the basis of GB/T 27930 

standard. Operators do not realize that VIN is not a security identification in insecure 

CAN-BUS communication.

GB/T 27930 is the Chinese standard for electric vehicle battery charging. Cable charging 

standard GB/T 27930 is based on the SAE J1939 network protocol and uses the CAN 

bus with a point-to-point connection between the charger and the battery management 

system. A transmission rate of 250 kbit per second is used by default. 

Table 2 Private protocol of SuperCharger
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Charging communication involves both the battery management system and the charger 

agreeing on the power requirements of the vehicle and both the amperages and voltages 

used during charging, as well as monitoring the charging process. With the GB/T protocol, 

communication is divided into the following parts during the charging process:

Figure 11 GB/T 27930 Standard Figure 12 GB/T 27930 Charging process

In the handshake recognition phase, the charger connection check is completed and 

general information such as the protocol version and vehicle information (battery type, 

vehicle identification number etc.) is exchanged. What’s most concerning is that during 

Phase 2, the BMS will transmit the VIN number to the charging pile.
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After actual testing, we use cantools and 

the corresponding DBC file to successfully 

translate all messages during the charging 

process as shown in Fig 13 (left).

Figure 13: GB/T 27930 Charging protocol

Table 3: BRM Message during the handshake

We found The BMS of the electric vehicle 

transmits the vehicle’s VIN to the charging 

pile for identity authentication in the BRM 

message during the handshake recognition, 

as tabulated in Table 3.
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The following is the complete Plug & Charge’s arch. First, the car owner needs to register 

and bind the vehicle’s VIN number on the charging pile operator’s APP, and activate 

automatic payment. 

Secondly, when the car owner is charging, owner only needs to directly plug the charging 

gun into the electric car to charge. 

The Charging pile will upload the VIN transmitted from the BMS to the operator’s cloud 

server, and the operator will query and return the user credentials corresponding to the 

VIN in the background database. After the charging pile receives the user credentials, it 

will start charging and automatically pay at the end of the charge.

Vehicle identification number (VIN) is a unique code, including a serial number, used 

by the automotive industry to identify individual vehicles. The biggest problem is VIN is 

public plaintext information, with specific coding rules, and can also be obtained from 

the front windshield of the car. 

Figure 14 Plug & Charge based on VIN

Figure 15 VIN Coding rule

In order to configure the attack script quickly, we have written a tool that its main functions 

include the tampering of VIN, charging voltage and current. It also supports the BMS 

simulation, so that we can test the charging pile without a vehicle.

Figure 16: The position of VIN on the Tesla Model3

Figure 17 XCharger
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REAL WORLD ATTACK

In order to verify our tools in the real world, we rented 5 electric cars of different models 

and tested multiple charging stations that support Plug & Charge. We verified that after 

obtaining the VIN on the windshield of the vehicle, the charging pile can be successfully 

attacked by XCharger to achieve free charging.

All the vulnerabilities we found have been notified to the vendor and fixed.

FUTURE TRENDS

According to the news, the next-generation charging standard “Chaoji”, dominated by 

China and Japan, will be officially released, it’s improving the security of communications 

and identity authentication. (Fig 19)

ChaoJi charging supports plug and charge, V2X, automatic charging system and other 

new technology applications. Some of the security risks mentioned in our talk may be 

resolved.

In addition, we also see another new standard, ISO15118 (Fig 20). It is a standard for 

vehicle-to-grid communication, uses asymmetric encryption and digital signature to 

ensure the security of communication between electric cars and charging stations, and 

supports “plug and charge”.It uses PLC communication, which is mainly used in Europe.  

Figure 18 Real World Attack

Through the discussion of these trends, we are very happy to see that security has 

become a must be considered in these standards. We believe that in the near future, 

when these new technologies and new standards are applied in the real world, they will 

promote the security development of the entire electric vehicle charging industry. □

Figure 19 Chaoji Charging

Figure 20 ISO 15118
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REBUILDING 
HEAVEN’S 
GATE
from 32-bit Hell 
to 64-bit Wonderland

ShengHao Ma

OVERVIEW

It is necessary for Microsoft to provide backwards-compatibility 

for 32-bit software on 64-bit editions of Windows through the 

“Windows32 on Windows64” (WoW64) layer, used to simulate any 

32-bit binary as a native 64-bit process.

This is because, for compatibility, most application vendors would 

like to release their products as 32-bit binary files that can be used 

both on 32- and 64-bit versions of Windows.

In this report, we will discuss the WoW64 layer of the latest Windows 

10 Enterprise by conducting reverse engineering. We’ll explore how 

a WoW64 process is created in native 64-bit Windows, the difference 

between 32-bit & 64-bit system interrupts, the translation engine 

embedded in the WoW64 layer, and the relevant attack vectors.

We will demonstrate a new method to “knock on heaven’s gate”, 

that rebuild a whole new path to the WoW64 translator. This makes 

it possible to do process hollowing and bypass HIPS protection of 

NOD32 at the same time.

We also found a new attack vector: abusing the design of WoW64 

thread context snapshots to create a gadget, which can then be 

used to take over the execution control flow of WoW64. It allowed us 

to arbitrarily inject and conduct bypasses, and execute a mimikatz 

process under HIPS protection of AVAST.
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WoW64 PROCESS CREATION 

RunSimulatedCode

There is a function called 

RunSimulatedCode which is 

exported from wow64cpu.dll 

(64-bit DLL) and is used as a 

thread initiation entry under 

WoW64 layer. 

At the begin of the function 

(as shown above) 64-bit 

thread keeps a copy of 

important register statuses 

on the stack, allocating 68 

bytes to the stack stack as a 

buffer. It performs a series of 

Initializations specific to the 

64-bit WoW64 thread:

1. Set register r12 point to 

64-bit TEB (Thread Environment Block)

2. Set register r15 point to a function table: TurboThunkDispatch.

3. Set register r13 point to 32-bit thread context, and It’s recorded in TEB64 + 

offset 0x1488.

About point 1: Even if we’re in pure 32-bit mode, we still can get the address of TEB64 

easily via gs:0x30. For point 2, TurboThunkDispatch, we’ll share more information shortly. 

The most interesting part for us was point 3: registering r13 points to the 32-bit thread 

context being used as snapshot for changing thread mode from 32-bit to 64-bit, and vice 

versa.

TurboThunkDispatch

As mentioned before, register r15 point to a function table named TurboThunkDispatch, 

including a total of 32 different callback functions which are used as trampoline to enable 

the 32-bit system call to be simulated as 64-bit native interrupts.

For most Win32 APIs exported from ntdll.dll, only 2 callback functions of TurboThunkDispatch 

that must be known will be executed:

1. The latest function CpupReturnFromSimulatedCode is the first executed 

callback function when the 32-bit thread jumps back to 64-bit. When this 

function is called, it’s used to take a snapshot of current thread status and pass 

32-bit system interrupts to the WoW64 translator.

2. After CpupReturnFromSimulatedCode finishes its job and snapshots 

the 32-bit thread current status, it will be followed by the first function. 

TurboDispatchJumpAddressEnd will simulate 32-bit system calls by  invoking 

the translator function wow64!Wow64SystemServiceEx with the 64-bit calling 

convention. It will then fetch the simulation return value from register Rax, 

restore the 32-bit thread status from the latest snapshot, and lastly jump back 

to 32-bit programs and resume running.
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NTAPI TRAMPOLINE  

We just roughly discuss the creation flow of wow64 processes. The following part is the 

implementation of interrupt simulateor from 32-bit to 64-bit.

Here we use NtOpenProcess as a sample. 

In 32-bit mode, most Win32 APIs will finally use exported APIs of ntdll.dll to send requests 

to the kernel. As many researchers know, in 32-bit mode, Windows reads register Eax 

as the syscall number. All the arguments should be place on the top of the current stack, 

and system interrupts can then jump into the system kernel.

However, if a 32-bit program directly sends an interrupt to the native 64-bit system, the 

API requests will definitely fail. For example, the arrangement in memory of the 32-bit 

or 64-bit data structure, and the mismatch of calling conventions between x86 and x64. 

Therefore, there’s a gadget named WoW64SystemServiceCall (exported from ntdll.dll) to 

replace direct syscall interrupts, and which is used as a gate to deal with all the issues 

between 32-bit and 64-bit we just talked about. 

Inside the WoW64SystemServiceCall, at wow64cpu.dll+6000, a far jump (0xEA) can be 

used to modify the CS segment from 0x23 to 0x33, and that makes the Intel CPU parse 

those machine codes from register Eip/Rip in an x64 Instruction set. 

At the same time, we retrieved the 64-bit registers to use. The trick of modifying the CS 

segment, to change the disassemble mode of an Intel CPU, is the well-known method 

called Heaven’s Gate. Note that there’s 3 different mode of CS segment: 

1. 64-bit (Native)   = 0x33

2. 32-bit (WoW64) = 0x23

3. 32-bit (Native)    = 0x1B

As mentioned before, register r15 point to the function table TurboThunkDispatch. 

At wow64cpu.dll+6009 r15+0xF8 point to the last function of the table: 

CpupReturnFromSimulatedCode.

CpupReturnFromSimulatedCode

CpupReturnFromSimulatedCode is the 

first executed callback function when the 

32-bit thread jumps back to 64-bit. At the 

beginning, it snapshots the current thread 

register statuses into 32-bit thread context 

(dereferencing the pointer from register 

r13).

An interesting thing here is, there are at 

least two stacks in the memory of the 

WoW64 process. One is used for 32-bit 

program normal use; The other one is a 

standalone and only used by the 64-bit 

mode thread (inside the WoW64 layer) to 

execute 64-bit native Win32 APIs. 

Thus, at the begin of function one can use 

xchg Rsp, r14  to exchange the currently 

used stack from the 32-bit program stack 

to the 64-bit stack. This 64-bit stack will be 

held until the current simulation is done. 

We can then use mov r14, Rsp to recall the 

64-bit stack on r14 in the end WoW64 layer 

(and it will be used again when launching 

another 32-bit system interrupt).

Next, TurboDispatchJumpAddressStart 

funtion will be used to choose the next 

destination up to the current 32-bit syscall 

number (Rax). The upper 2 bytes of the 

syscall number should be zero, so the 

result of shr ecx, 10h will get the element 

index (Rcx) of TurboThunkDispatch, which 

should also be zero. 

Thus, in most situations, the 

destination should be the first function, 

TurboDispatchJumpAddressEnd, of the 

function table TurboThunkDispatch.
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TurboDispatchJumpAddressEnd will simulate 32-bit system calls by invoking the 

translator function wow64!Wow64SystemServiceEx in the 64-bit calling convention to 

get the simulation return value from register Rax and then jump back to restoreStatus to 

resume the 32-bit program.

In above picture, we can see that Wow64SystemServiceEx is a native 64-bit function, 

and its usage follows x64 calling conventions. Its first argument is register Rcx, and the 

second one is Rdx. The 32-bit syscall number is placed on the first argument, and the 

start of 32-bit arguments on the stack (as known as va_start in C/C++) is placed on the 

second argument. 

After that, we just invoke wow64! Wow64SystemServiceEx, and it will translate our 32-bit 

request into a 64-bit interrupt, execute, and set the result into register Rax.

In the sub-program restoreStatus (above) it will fetch 32-bit thread status from the 

snapshot, and get recovered to the original state of the first step in WoW64 layer. 

Then, use another far jump back to 32-bit program and set the CS segment back to 

0x23. This causes the Intel CPU to treat the following machine code as 32-bit code.

THE WoW GRAIL: ABUSING THE TRANSLATOR

Building a New Path Back to Heaven

Previously, we have shown that there’s an important 64-bit function, 

WoW64SystemServiceEx, embedded inside wow64.dll (64-bit native DLL). It simulates 

any 32-bit request, and is easy to use.  

Just give 32-bit syscall number information and a 32-bit argument list to 

WoW64SystemServiceEx. It will translate it, then execute all the system requests in 64-

bit mode. It’s a graceful trick to bypass all the user-land based HIPS or EDR solutions, 

because most user-land hooks of HIPS or EDR will be installed on the entry of the 32-bit 

NTAPI by inline hooking – not on the WoW64 layer. 

However, the first challenge we meet immediately is: how do we get the 64-bit address 

of WoW64SystemServiceEx under pure 32-bit mode?

As mentioned before, r15 points to the function table TurboThunkDispatch, and the first 

function of it fortunately is the pointer of function TurboDispatchJumpAddressEnd. 

We also know there’s a far call instruction to invoke Wow64SystemServiceEx right in 

the function TurboDispatchJumpAddressEnd, so it’s an easy thing to get the pointer of 

Wow64SystemServiceEx if we know where the TurboDispatchJumpAddressEnd is.

In line 11 of the source code (above), there’s a shellcode using x86 instruction retf to 

change the current CS segment to 0x33. After entering heaven’s gate, it causes lines 14-

27 of the source code to be treated as 64-bit assembly by the Intel CPU.
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We use the classic malware technique Process Hollowing (RunPE) (above) and all the 

sensitive Win32 APIs have been built into our new path to heaven.

In our experiment, this method was robust enough to work against the fully updated 

HIPS protection of ESET NOD32. This technique has been release under the Github  

aaaddress1/wowGrail · GitHub .

In lines 14-20 of the source code, we can find the first pointer of r15. It should be the 

address of TurboDispatchJumpAddressEnd. Read the destination from the x86 call 

instructions inside TurboDispatchJumpAddressEnd, and now we get the 64-bit pointer 

of Wow64SystemServiceEx. We can then use x86 instruction stosq to save the 64-bit 

pointer into the variable pass from the caller.

In line 27 of source code, the shellcode makes the CS segment change back to 0x23, 

run as 32-bit thread, and leave the function.The pointer of Wow64SystemServiceEx can 

now be used to simulate any 32-bit syscall without the old path from 32-bit ntdll.dll.

Confirm the payload in the line 78-87 of source code (above): prepare syscall 

number, and 32-bit argument list on Rcx and Rdx. Then enter 64-bit mode, use xchg 

r14, Rsp switching current used stack to 64-bit stack. Next, invoke the pointer of 

wow64!Wow64SystemServiceEx, use xchg r14, Rsp to switch the current stack to 32-bit, 

and leave 64-bit mode. 

Just abusing the payload as a gadget to launch 64-bit interrupts allows us to easily 

bypass all the user-land hooks with just one gadget.
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WoWINJECTOR: ONE GADGET TO TAKE OVER THE HELL

The 32-bit Thread Snapshot

We’ve previously shared about the sub-

program restoreStatus. It will fetch 32-bit 

thread status from the snapshot above, 

and get recovered to the original state 

when leaving 64-bit thread mode during 

the WoW64 layer.

The most interesting part is, the address 

of the 32-bit thread context is predictable. 

Thanks to @waleedassar leaving a note in 

his blog (pastebin.com/8ZQa2heh) about 

the creation of WoW64 processes, from 

which we learned:

1. There are 4 definite environment 

blocks in a WoW64 process: 

TEB64, TEB32, PEB64, PEB32 

(ordinal by address, lower to 

higher).

2. Kernel call nt!MiCreatePebOrTeb 

allocates a large space used for 

keeping the 4 blocks. 

3. From the start of 32-bit TEB, the 

address of the corresponding 

64-bit TEB can be found at offset 

0xF70. 

Regarding point 2, an attacker can just 

leak the address from one of the 4 blocks, 

and addresses of the other 3 blocks will 

be predicted, e.g. The 64-bit TEB always 

precedes the corresponding 32-bit TEB 

by two pages (AddressOf TEB64=TEB32 – 

0x2000). 

Moreover, we’ve found that address of the 

32-bit thread context is stored at the fixed 

offset 0x1488 on the TEB64. Thus, if we 

can leak the address of PEB32, we can also 

get the address of TEB64 (because of the 

4 blocks in the same memory region) and 

then we get the address of 32-bit thread 

context.

As shown in the next screenshot, we 

designed a hollowing function used to do 

Process Hollowing by injecting the 32-

bit thread snapshot. Using the Win32 API 

CreateProcess and GetThreadContext, we 

can get the initial thread state of the child 

process. Registering Ebx on a newborn 

thread, the pointer of PEB32 is always 

retained, so it’s not difficult to leak the 

address of the 32-bit thread context. 

In the next step, all we need to do is allocate a new space to keep shellcode, as well as 

control the register Eip to shellcode. 

BOOM! Without any sensitive APIs to control the program counter of a 32-bit thread, we 

can inject a malicious payload like mimikatz into a new process under the full updated 

HIPS of AVST. □
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macOS
LLOCAL 
SSECURITY
escaping the sandbox and bypassing TCC

Sandboxing on macOS was introduced 13 years ago, 
but Apple did not leave it at that. Step by step, additional 
restrictions and new protection measures were added. 
Since the release of macOS Catalina in 2019, even 
non-sandboxed apps need to deal with sandbox-like 
restrictions: all apps now need to ask permission to 
access sensitive files, like those in the user’s documents 
folder. Features such as the camera and geolocation 
already needed user approval. This system of user-
controlled permissions is known as Transparency, 
Consent & Control (TCC). Each new security measure 
like this will also mean the introduction of new security 
boundaries, with entirely new classes of vulnerabilities. 
Many parts of the system must be re-examined to check 
for these vulnerabilities. For example, malware can now 
try to attack apps to “steal” the permissions granted 
by the user to that app. Apple has taken steps to allow 
apps to defend themselves against this, such as the 
hardened runtime. Ultimately, however, it is up to the 
developer of an app to safeguard its permissions. Many 
developers are not aware of this new responsibility. 
To make matters worse, Apple’s documentation and 
APIs for these features are not as clear and easy to 
use as they should be. We will start with an overview 
of local security measures on macOS Big Sur. Then, in 
the second part, we will show some vulnerabilities we 
found in software to evaluate the effectiveness of these 
measures. These vulnerabilities allowed stealing TCC 
permissions, sandbox escapes and privilege escalation.

ABSTRACT

Thijs Alkemade and Daan Keuper
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LOCAL SECURITY ON macOS

Gatekeeper

In Mac OS X Lion (10.7, released in 2011), 

Apple introduced code signing. This is a 

method of adding a cryptographic signature 

to an executable with prevents tampering 

with any part of the file. Signatures are 

(usually) generated using a certificate 

issued by Apple to a paid member of the 

Apple Developer Program, which also 

includes a developer identifier to indicate 

which developer account signed it.

Each signed binary includes a list of 

entitlements. These are mainly used to 

give the process more (or sometimes 

less) permissions. For example, a process 

accepting incoming XPC connections can 

check the entitlements of the connecting 

process to decide if it is authorised to 

perform a specific action. 

Any developer can add these entitlements 

while signing, but most of them are private 

and are only accepted on Apple’s own 

executables.

If an application needs a specific powerful 

entitlement, then it is common to separate 

the part that needs to use that entitlement 

into a separate XPC service. Then the main 

application can ask the service to perform 

the operation. This can make it much 

harder to abuse that entitlement when a 

vulnerability is found in the application.

One problem with the way entitlements 

are used is that Apple rarely revokes code 

signatures, in practice only for malware. 

This means that if an application with a 

powerful entitlement had a vulnerability, 

then it will remain exploitable even if the 

application is updated to fix the vulnerability 

as malware could download an old copy 

and exploit that.

Each time a binary is started, the code 

signature is verified. Embedded resources 

(such as images and frameworks) can 

also be signed. A hash is computed for 

each signed resource and placed in the 

CodeResources file. The hash of this file is 

included in the code signature of the main 

application.

Checking only the binary is known as 

a shallow code signing check. It is also 

possible to perform a deep code signing 

check, which checks all resources. This is 

very slow for large applications, as it needs 

to compute a hash of every file.

When an application has been downloaded 

from the internet, the downloading tool can 

add a quarantine flag to the application. 

If this flag is present, then a deep code 

signing check is performed and the user 

must confirm running the application. 

This is used to prevent users from opening 

an application which was pretending to be 

something else. A quarantine flag is also 

automatically added to all files created by 

a sandboxed application.

In macOS Mojave (10.14, released in 

2018), Apple added the ability to notarise 

applications. To do that, the application 

must be signed, using the hardened runtime 

wand a copy must be uploaded to Apple, 

who can grant it a notarisation ticket. 

The hardened runtime is a set of 

extra restrictions mainly for making 

process injection more difficult. 

When a user attempts to run a 

quarantined application, macOS 

will check the notarization ticket. If it 

is notarised, then the user is asked 

if they want to allow it to run. If not, 

the user must perform additional 

steps to run it. See Figure 1 for the 

message when running a newly 

downloaded notarised application.

Figure 1: Running a newly downloaded 

application requires user approval.

Seatbelt

In Mac OS X Leopard (10.5, released in 

2007), Apple introduced sandboxing, 

known also as Seatbelt. In the kernel a 

hook has been added to each system call 

to check the sandboxing permissions of the 

calling process to determine if an operation 

is allowed or not.

The permissions of a process are 

determined based on a profile. These are 

written in a Scheme-like programming 

language. For many of the internal services 

in macOS a custom profile is included to 

allow only the strictly necessary permissions 

for that service. Processes can sandbox 

themselves by calling sandbox_init(), so a 

daemon could perform some unsandboxed 

setup before enforcing the sandbox.

One special profile is the Mac App Sandbox 

profile, included in application.sb. This 

profile is enforced automatically and 

immediately if the application has the com.
apple.security.app-sandbox entitlement.

The use of a programming language for 

the profile is used extensively for this 

profile: the entitlements of the process are 

checked to change the restrictions that 

are enforced. For example, the com.apple.
security.network.server entitlement gives 

an application the permission to start a 

network server, which is implemented in 

the sandboxing profile as:

(when (entitlement “com.apple.security.
network.server”)

      (allow network-inbound (local ip)))

The Mac App Sandbox also does 

something else: it creates a new container 

for the application. Each application 

gets its own container in ~/Library/

Containers/<bundleid>. These containers 

contain a mix of symlinks to the real 

directory and new directories specifically 

for that application. 

The main use for this is to make sandboxing 
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for existing applications easier, as the 

application gets full access to the new 

directories in its container, without being 

able to access files of other applications.

Note that these containers are not a 

security restriction, and that the application 

can see the path to the container and 

ignore the container if it wants. It should 

not be confused with Docker containers or 

BSD jails.

System Integrity Protection

System Integrity Protection (SIP) was 

introduced in OS X El Capitan (10.11, 

released in 2015). Most Macs will be used by 

a single user with administrative privileges. 

This means that obtaining the password for 

the current user (for example, by imitating 

a password prompt) is enough 

to elevate permissions to root. 

The goal of SIP is to reduce 

the impact that only a privilege 

escalation to root can have.

For example, SIP restricts 

modifications to certain files, 

the loading of kernel/system 

extensions and process 

debugging. It is implemented 

using much of the same 

technology as sandboxing, 

essentially enforcing a global 

implicit sandboxing profile for 

all processes.

SIP also limits access to sensitive 

user-specific files. For example, 

processes are not allowed to read files in 

~/Library/Mail unless they have specific 

entitlements, even for the root user. This 

also means that a process running as a 

user may have permissions that a different 

process running as root does not have.

Transparency, Consent & Control

Transparency, Consent & Control (TCC) 

was introduced in macOS Mojave. This is 

as a dynamic sandbox for privacy-sensitive 

subsystems, such as access to the camera, 

location services, Documents folder, etc. 

Instead of a static sandboxing profile, the 

user can control these permissions and 

choose to allow or deny them. See Figure 

2 for an example of this prompt.

The TCC daemon keeps track of what 

permissions the user has assigned per 

application. This is done based on the 

bundle identifier and the developer 

identifier of an application, which means 

that upgrading an application maintains its 

permissions.

Figure 2: The user controls whether an 

application can read from sensitive directories.

Signed System Volume

The Signed System Volume (SSV) was 

introduced in macOS Big Sur (11, released in 

2020). In Catalina (10.15, released in 2019), 

the start-up disk was split into two volumes: 

a system volume and data volume. The 

system volume was for system files and 

mounted as read-only. The data volume 

held all user files, third-party applications, 

etc. Only when installing a new system 

update the system volume would be 

mounted as writable. This made it harder 

for malware to persist.

In Big Sur, Apple has taken this concept 

even further. The system volume is now 

cryptographically signed. For each file on 

the system volume, its SHA-256 hash is 

stored in the metadata of the file. These 

hashes are combined into a Merkle Tree. 

The root hash of the Merkle Tree (the seal) 

is signed with a key from Apple. When 

reading a file from that volume, its hash is 

verified against the tree to ensure it is not 

modified.

VULNERABILITIES

In this section, we will cover a few different 

vulnerabilities to demonstrate how these 

security mechanisms work in practice.

Privileged updaters

On some systems, the most active user 

has a Standard user account instead of 

an Administrator account. For example, 

machines used by children where only a 

parent uses the Administrator account. 

Standard users are not allowed to make 

changes in /Applications. This creates 

an issue for installing updates: how can 

software that automatically updates itself 

do that if a standard user account uses it?

Installing software updates quickly is 

important, especially for security-critical 

software such as browsers and PDF 

readers.

Some software has implemented a way to 

handle this: a separate service running as 

root is used to perform the installation. A 

separate service is installed as a privileged 

helper tool with a launch daemon 

configuration automatically starting it as 

root. The application checks for updates, 

sees a new update is available and 

downloads it. 

It then asks the service to install the 

downloaded package. This way, the 

Administrator needs to enter their password 

only once, to install the privileged helper 

tool on the first run.

The privileged service should perform two 

checks that are critical for security: the 

XPC connection should originate from the 

correct application and the update package 

should be legitimate. If both checks are not 

implemented correctly, privilege escalation 

is a possibility. 

Another app could ask the service to install 

a malicious package, which would in most 

cases mean privilege escalation. Although 

it requires two vulnerabilities, in practice 

it happens quite regularly that both 

vulnerabilities are present. The first check 

could be bypassed if the code signing 

check is wrong (or even entirely missing) 

or if a process injection vulnerability exists 

in the application. The second check can 

often be bypassed using a time-of-check/

time-of-use (TOCTOU) vulnerability: the 

package is checked and found to be 

legitimate, but between the check and 

installation it is changed to a malicious 

package.
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Adobe Acrobat DC

Adobe Acrobat DC was vulnerable, as found 

by Yebin Sun of Tencent Security Xuanwu 

Lab and described on https://rekken.github.

io/2020/05/14/Security-Flaws-in-Adobe-

Acrobat-Reader-Allow-Malicious-Program-

to-Gain-Root-on-macOS-Silently/. 

The code signing check was completely 

absent and symbolic links could be used to 

swap the update package between check 

and use. Adobe released a fix for this in 

May 2020. 

However, both fixes were not sufficient, as 

first reported by Csaba Fitzl from Offensive 

Security. The code signing check was not 

implemented correctly. 

One difficulty with a code signing check is 

that the process identifier (pid) is not safe: 

an application can open an XPC connection, 

send a request and then execute a different 

process while keeping its pid the same.  

A check based on the pid has a chance of 

looking at the new process instead of the 

old one. The way that was used by Adobe 

relied on the pid for the check, which meant 

it could be bypassed. 

For the second part, only a check was 

added to see if the file was a symbolic link. 

Because the file was moved (not copied) 

it was possible to bypass the check by 

using a hardlink to the update file. Adobe 

released a second patch in August 2020.

We looked at it sometime later than Csaba, 

but before the fixes were released. When 

they were, it took only a short amount of 

time to adapt our exploit. In the code, it 

was visible that Adobe had started on the 

correct check for the XPC connection, 

but this was unfinished, and the function 

always returned true.

Adobe had also implemented a check 

that the package was a regular file with 

no additional references (so no hardlinks), 

but the package was still moved instead of 

copied. This made it possible to perform the 

following attack: the malicious application 

could open a file descriptor for the package 

file and then request the installation. 

Open file descriptors remain valid if a file 

is moved and its permissions are changed, 

even if the new permissions would no 

longer allow that application to open that 

file. 

By using the open file descriptor and 

switching the contents from a legitimate 

package to a malicious package at the right 

moment, it was possible to use a malicious 

package and elevate privileges to root.

This is a race condition, however, we can 

cheat at this race: the log of the service is 

publicly readable, so we can swap the file 

immediately after reading the line that it 

has been verified.

Adobe is not the only large company 

with vulnerabilities in its privileged 

updater. Google Chrome, Microsoft Office 

AutoUpdate and Microsoft Teams have all 

had similar issues over the years.

What makes this issue even more      

dangerous is the fact that users on macOS 

are used to deleting an application 

to uninstall it. Unless a self-destruct 

mechanism is specifically implemented 

in the privileged helper tool, it will remain 

available, waiting for requests to install 

updates but never getting updated itself 

because the application that needs to 

initiate the update is gone. 

A user who has used an application years 

ago may therefore still have a vulnerable 

privileged helper tool allowing privilege 

escalation in this way.

Open and save panels (CVE-2020-

27900)

Open and save panels, in which users 

select a file to open or a place to save a 

file, are used often by any macOS user. 

These panels appear quite dull but have 

a surprisingly complicated implementation 

to deal with sandboxed applications. They 

form a critically important security boundary 

for the Mac App Sandbox.

The contents of a panel are drawn 

by a different process called   

(openAndSavePanelService) which is 

unsandboxed and has access to all files, 

similar to an iframe in a website. Once the 

user has selected a file, the application’s 

sandbox is extended to allow access to 

that file temporarily.

This makes use of the class NSRemoteView 

to receive the UI from the other process. 

This is an entirely private API, but the 

Objective-C runtime makes it possible to 

inspect the list of methods for all classes 

at runtime. In that list of methods, we 

found an interesting method named 

-[NSRemoteView snapshot:]. 

As the name suggests, this takes a snapshot 

of the view’s contents and returns it as a 

bitmap to the application. See Figure 4 (next 

page) for an example where a sandboxed 

application obtains a snapshot.

When used for an open panel, it allowed a 

sandboxed application to obtain a directory 

listing for directories it does not have 

access to. Some files such as images show 

a preview of their contents which the app 

could also obtain. Apple has fixed this by 

adding a new authorization check to this 

function.

Figure 3: Vulnerabilities in privileged helper tools that could lead to privilege escalation.
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Figure 4: A sandboxed application obtains a screenshot of an open panel, with a listing of the user’s 

files.

System Preferences sandbox escape 

(CVE-2020-10009)

Contrary to the iOS App Sandbox, the Mac 

App Sandbox profile allows fork() and exec, 

which inherit the sandbox of the parent. 

Attempting to perform an operation that is 

prohibited by the sandbox in most cases 

only results in a “permission denied” error 

result. 

One exception for this is attempting to 

apply a sandbox configuration when an 

application is already sandboxed, which 

makes the kernel terminate the application.

This means that launching other processes 

from a sandboxed application works if 

those processes are not sandboxed. This 

works for command-line tools, but also for 

complete applications. To see what would 

happen, we launched all applications 

included in a default installation of macOS 

from a sandboxed application. This led to 

some interesting results. 

The most interesting application was 

System Preferences.app because this 

application was working fine. Even the 

security critical settings in the Security 

preference pane were working as usual. 

Inspecting the process tree in Activity 

Monitor showed why this was the case. 

Each of the preference panes in System 

Preferences is running in a separate XPC 

service, using the same NSRemoteView 
technology as the open panels to draw in 

the System Preferences window.

This is used even for third-party preference 

panes, which are not XPC services, 

but bundles. These are loaded by the 

legacyLoader XPC service, which translates 

from the old bundle-based preference pane 

API to the new NSRemoteView method.

While this was an interesting trick, it did 

not compromise the security of System 

Preferences yet. To do that, we noticed 

that System Preferences had creating a 

few files in the container of the sandboxed 

application, including 3 cache files. This 

meant that System Preferences was 

resolving the path for these files relative to 

the container of the sandboxed application.

The file com.apple.preferencepanes.
usercache contained a list of the third-party 

preference panes installed by the user, 

likely so those do not need to be analysed 

on each launch. No validation was present 

on the paths in that file, which made it 

possible to perform the following attack:

1. Create new cache file with a 

preference pane using a bundle 

from our application.

2. Add a new alert for this 

preference pane.

3. Start System Preferences within 

the sandbox of this application.

The new alert added in step 2 meant that 

System Preferences would automatically 

open the malicious preference pane. Then, 

legacyLoader would be launched (an XPC 

service, so not in our sandbox) and it would 

load the bundle of the malicious preference 

pane, giving the application code execution 

outside of the sandbox. 

This meant we had a sandbox escape. 

Apple fixed this in the macOS Big Sur 

release by adding a check to the main() 

function of System Preferences to exit if it 

is sandboxed.

Electron apps with TCC

The TCC permissions of an application 

are tracked based on the bundle identifier 

and the developer identifier. Notably, the 

version of the application and the path 

to the application do not matter for TCC. 

Shallow code signing checks only look 

at the binary of the executable itself, any 

included resources are not considered 

unless a Gatekeeper check is performed. 

The hardened runtime means that any 

included libraries and frameworks are 

also checked once they are used, but 

interpreted code that is in a file separate 

from the main executable is not checked.

Electron applications are built by combining 

a web application with a Chromium 

runtime. This means that most of the code 

is implemented in JavaScript in separate 

files. This allows the following attack to 

steal the TCC permissions that applies to 

all Electron applications:

1. Copy app to a writable location.

2. Replace JavaScript with 

malicious code.

3. Launch the modified app.

4. Use TCC permissions of the app.

As it happens, many video chat applications, 

including Microsoft Teams, Signal, Slack, 

Discord and Skype, use Electron for their 

desktop clients. This means that the 

chance of a user having given webcam and 

microphone access to at least one Electron 

application is very high. 

As a result, malware that has infected 

a system can also obtain access to the 

webcam and microphone by exploiting 

one of those applications in this way.

Solving this issue using the existing code 

signing APIs is difficult. Performing a deep 

code signing check by the application on 

itself is insufficient: the resource could be 

modified after the check but before the use 

of the file. One way this could be addressed 

for Electron apps would be to embed a list 
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of hashes for each JavaScript file in the 

main executable and verifying those each 

time a resource is opened.

For non-Electron apps there are also design 

issues. Even if the application currently uses 

the hardened runtime, it is very likely that 

a previous version exists that did not use 

it. By downloading an old version without 

the hardened runtime, setting a DYLD 

environment variable and then launching 

it, any application could be exploited 

to steal their TCC permissions. This is a 

design issue that is up to Apple to solve, 

for example, by not allowing downgraded 

applications to use TCC permissions.

App process injection

Process injection is a way for an application 

to add code to a different application. 

Replacing frameworks or the JavaScript 

code of Electron apps are examples of doing 

this that have already been mentioned, but 

many other techniques exist. We have also 

demonstrated how process injection can 

be used to communicate with privileged 

helper tools and to steal TCC permissions.

During our research, we have reported two 

new process injection vulnerabilities to 

Apple in September and December 2020 

that are currently still under investigation, 

so we are not able to share the full details. 

To assess their impact, we investigated 

what the impact of a generic process 

injection technique could be. 

We found that both vulnerabilities could be 

used for privilege escalation to root and 

for bypassing SIP restrictions. One of them 

could also be used as a sandbox escape.

The only details we can give for the 

sandbox escape is that injecting into any 

non-sandboxed process from a sandboxed 

application is enough to escape the 

sandbox.

For privilege escalation, we inject into an 

application that has a specific entitlement. 

Some applications have an entitlement 

allowing them to install packages signed 

by Apple without user approval. For 

example, Boot Camp Assistant.app. This 

is the entitlement com.apple.private.

AuthorizationServices with the option 

system.install.apple-software.standard-

user.

This means we can install any Apple signed 

package by injecting into one of these 

applications. Ilias Morad found that the post-

install script of Apple’s macOSPublicBeta 
AccessUtility.pkg can execute arbitrary 

code as root. See the writeup for CVE-

2020-9854 https://a2nkf.github.io/

unauthd_Logic_bugs_FTW/.

To bypass the filesystem restrictions for 

SIP, we abused the application macOS 

Update Assistant.app. This application was 

included on the beta installation image for 

macOS Big Sur and it has the entitlement 

com.apple.rootless.install .heritable. 
This means that this process and any 

subprocesses it starts are exempt from SIP 

for accessing files.

CONCLUSION

Apple has added a lot of new security measures to macOS 

over the years, some of them bringing macOS closer to 

the security of iOS. Many weaknesses in these systems 

still exist.

Sandboxing is an important part of macOS security. The 

security of the iOS sandbox has received a lot of attention, 

which has often carried over to macOS. However, the 

higher layers of the sandboxing functionality on macOS 

have not gotten similar attention. This leaves a lot of 

unexplored attack surface, for example in AppKit.

TCC is used to bring the user-controlled permissions of 

mobile platforms to macOS, without enforcing the use of 

sandboxing on all applications. The security of this system 

depends on each application managing their permissions 

securely, as only a single vulnerable application with a 

TCC permission can allow malware to steal it. It also suffers 

from design issues making it easy to bypass in practice.

Process injection vulnerabilities have become devastating 

on macOS because they can be used to defeat many 

of these security measures, such as TCC, code signing 

and in some cases sandboxing. This is partly due to the 

assumption by Apple that process injection is not possible 

and that therefore they can give their own applications 

powerful entitlements. Sometimes these entitlements can 

be equivalent to running a process as root. □
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INSECURE 
LINK: 
SECURITY 
ANALYSIS 
AND 
PRACTICAL 
ATTACKS 
OF LPWAN

Li YuXiang and Wu HuiYu 

With the rapid development of 
the Internet of Things technology, 
many new smart scenarios have 
emerged in recent years, such as 
smart cities and smart agriculture. 
The popularity of these new 
scenarios is inseparable from 
the rapid development of 
LPWAN (low-power wide-area 
network). In LPWAN, the two 
most mainstream technologies 
are LoRaWAN and NB-IoT, 
with hundreds of millions of 
IoT devices connected by the 
two technologies. Due to the 
complexity of the LPWAN supply 
chain, security in this area 
cannot be ignored. In recent 
years, LPWAN security research 
has focused on LoRaWAN, 
mainly focusing on LoRaWAN 
specification and keys. NB-IoT 
is relatively complicated and 
closed. Therefore, there are few 
security researches on NB-IoT 
in the industry. In this talk, we 
will share the security research 

findings in the LPWAN. We take 
modules and chips in the real 
world as practical objects to 
conduct a more in-depth study on 
the security of the LPWAN supply 
chain. First, we will introduce the 
supply chain implementation of 
different technologies in LPWAN 
and share the findings of our 
practice of existing security 
research on actual equipment. 
In addition, we will analyze 
the architecture of LoRaWAN 
and NB-IoT modules from the 
perspective of supply chain, and 
summarize the attack surfaces 
of the two technologies in the 
real world. Finally, we will share 
how to discovering and testing 
the vulnerabilities on the LPWAN 
module, as well as the multiple 
security risks (LoRaDawn) we 
found in the LoRaWAN supply 
chain. We hope that our findings 
can help manufacturers improve 
the security of the LPWAN supply 
chain.

ABSTRACT
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INTRODUCTION TO LPWAN SUPPLY CHAIN

In order to overcome the limitations of short range protocols, Low Power Wide Area 

Networks (LPWAN) are introduced, which offer a long range connectivity in the order 

of kilometers. It has low power and low bit rate for long-distance communication. The 

mainstream LPWAN technology includes LoRa, NB-IoT, sigfox. 

At present, these communication technologies have been widely used, including smart 

cities, smart agriculture, smart industries and so on, which belong to the application 

scenarios of LPWAN.

Figure 1 Market Share of LPWAN

According to the research of some organizations, it is predicted that more than one 

billion devices will use LPWAN technology in the future, among which LoRa and NB-IoT 

will occupy a large market share. At the same time, compared with Zigbee, Bluetooth 

and other communication technologies, the security research of LPWAN is relatively less. 

With the large-scale use of LPWAN devices, security in this area will be very important.

LoRa/LoRaWAN

LoRa (Long Range) is the modulation technique used in the physical layer that enables 

long-range low-power communications by using Chirp Spread Spectrum (CSS) 

modulation. It use unlicensed frequency bands, such as 470, 868, 915 MHz, anyone 

can independently deploy the network. LoRaWAN is a cloud-based medium access 

control (MAC) layer protocol but acts mainly as a network layer protocol for managing 

communication between LPWAN gateways and end-node devices as a routing protocol, 

maintained by the LoRa Alliance.

NB-IoT

NB-IoT is a new IoT technology set up by 3GPP as a part of Release 13. Although it is 

integrated into the LTE standard, it can be regarded as a new air interface. It uses the 

licensed frequency bands, which are the same frequency numbers used in LTE, and 

employs QPSK modulation. There are different frequency band deployments, which are 

stand-alone, guard-band, and in-band deployment

LPWAN Supply Chain

LoRa patent technology is dominant, mainly concentrated in semtech. There are more 

NB-IoT chip vendar, including Qualcomm, MediaTek, and Hisilicon, all of which have 

developed chips of their own architecture.  

Then there is the module. Some major module manufacturers (such as RAK, quectel,blox, 

etc.) encapsulate the chips and the capabilities they provide through integration, and 

give them to the equipment manufacturers . 

Equipment manufacturers will purchase a large number of modules for the development 

of end products. For example, water and electricity meter, door/window sensor, etc. 

Figure 2 LPWAN Supply Chain Composition

In the end, when deploying the LPWAN solution, you need to work with cloud vendors or 

operators to complete the deployment. At this point, the whole solution is fully deployed, 

and the scheme will be managed or optimized with cloud data in the later stage. 

In the real world, a complete LPWAN solution requires the participation of many vendors, 

so we think that the security of LPWAN supply chain is worth studying. 
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LoRaWAN vs NB-IoT

Technical characteristics

From the technical characteristics, because LoRaWAN is simple and easy to deploy, so 

in battery life, coverage, cost efficiency will be better than NB-IoT. On the contrary, NB-

IoT is managed by traditional telecom operators and refers to 3GPP standards, so it is 

excellent in terms of latency and security.

LoRaWAN uses AES 128 as its security basis. NB-IoT ‘s security features follow LTE, which 

has security protection in AS,NAS. At the same time, it uses SIM card as authentication, 

which is relatively more secure.

Figure 3 Technical Characteristics of LoRaWAN and NB-IoT

Network architecture

The LoRaWAN device transmits data to 

the gateway by radio. The gateway is very 

similar to the router, one side receives 

LoRa packets, the other side can access 

Ethernet through LTE, WIFI and other ways. 

Finally, it reaches the network server, 

and the solution manager can manage 

the device according to the application 

server. The LoRaWAN gateway is easy to 

buy, which is of great help to our security 

research. 

NB-IoT is quite different. It is a modified 

version of LTE. Therefore, the device 

is connected to the operator’s network 

through the base station (called eNodeB in 

LTE). An eNodeB is expensive and difficult 

to buy, and requires in-depth knowledge 

of radio before it can be developed on 

its own. Then there is the core network 

of operators. NB-IoT follows LTE’s EPC, 

which is a complete black box for us. 

Finally, connect to the IoT platform through 

the network. Managers can manage the 

equipment through this platform.

Figure 4 Network Architecture of LoRaWAN

Figure 5 Network Architecture of NB-IoT
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NEW SECURITY RISKS OF LoRaWAN AND OUR PRACTICE

LoRaWAN Protocol

The lorawan protocol consists of two parts, 

and lora is responsible for radio modulation 

and demodulation. The MAC layer is our 

focus. According to the specification, 

lorawan devices will be divided into three 

categories: class A, class B, class C. Choose 

according to different scenarios.

There are many keys in LoRaWAN. 

Generally speaking, The security basis of 

the protocol is AES. The AppKey is stored in 

the node and server, used to generate the 

session key. NwkSKey and AppSKey are 

session keys that are used for encryption, 

decryption and MIC verification. 

LoRaWAN has two ways to activate devices, 

ABP and OTAA. ABP can be understood 

as a constant session key, while OTAA 

conducts key negotiation through AppKey.

Previous Security Research

The existing security studies of the two 

technologies are mainly as follows:

• LoRaWAN: The security issues of 

the specification (v1.0.3), which 

has been fixed in the new version 

of the specification. But there are 

also great challenges in using the 

new specification in the real world. 

The security risks of LoRanWAN 

deployment, is usually an issue of 

secure use of keys. At this stage, 

it can be well solved by improving 

manufacturers’ security awareness 

and compliance operation.

• NB-IoT: There are few studies, most of 

which is survey or theory.

Security of LoRaWAN Supply Chain

In this section, we will introduce our new 

discovery in the lorawan supply chain, 

named loradawn. These risks occur in 

nodes, gateways and core networks, and 

are verified in practice.

Lorawan has many open source 

implementations, and these 

implementations are actually used in the 

real world. This slide lists several of the 

projects involved in our study, including 

the lorawan protocol stack, gateways, and 

servers.

Architecture of LoRaWAN Nodes

Products on the market usually have two 

architectures. The first is the MCU plus 

Radio mode. This method is low-cost, and 

the application and lorawan protocol stack 

run in this MCU and operate radio to send 

radio packets.

The other is the way of adding module to 

external MCU. At this point, MCU usually 

only runs applications or RTOS. The work 

on the protocol stack and radio operation 

is integrated into the module, and the 

module vendor will also add a part of the 

AT library.

But regardless of the architecture, we 

find that the lorawan protocol stack is an 

essential common component. The most 

widely used protocol stack is LoRaMac-

node. This is why we study this software.

Figure 6 Architecture of LoRaWAN Nodes

Architecture of LoRaWAN Gateways

Lorawan gateways are similar to routers. Packet Forwarder components are usually 

running on linux. The Packet Forwarder component reads the Lorawan packet through 

the driver, encapsulates the data into a specific protocol and sends it to the network 

server. Packet Forwarder components include packet_forwarder,basicstation,mqtt, etc.

Hardware needs to be connected to SX1301 to operate lora radio packets. 

For example, the architecture of the RAK831 gateway shows that it is based on raspberry 

pie, connects to SX1301 through a converter board and manipulates data through SPI

Figure 7 Architecture of LoRaWAN Gateways
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Architecture of LoRaWAN Network Server

The mainstream lorawan servers are chirpstack and ttn, both of which can be used for private deployment. In addition, TTN 

provides public services that allow anyone to build lorawan solutions. The two architectures are as follows: In general, they all 

include several components:: MQTT Broker, network server, application server, database, integration. Communication between 

these components uses MQTT,gRPC,HTTP and other protocols.

Chirpstack

Figure 8 Architecture of Chirpstack

TTN

After introducing the technology implementation in the real world, let’s summarize the security risks 

of lorawan supply chain.

On the node, we can pay attention to the vulnerabilities of the loramac-node software, which is a 

widely used software. 

On the gateway, we can pay attention to the security issues of different Packet Forwarder. 

wOn the server, they are all written in golang, so we can focus on the security risks introduced by the 

default configuration and open source code. Figure 9 Architecture of TTN

Security Analysis of LoRaMac-node

The loramac-node is developed by semtech and is widely 

used. Most packet parsing needs to know AES KEY, which 

we think will be very difficult in future. Therefore, our focus 

is on the logic before participating in the AES operation, and 

this part of the code is very simple. But fortunately, we found 

a vulnerability.

The vulnerability is caused by loramac-node ‘s failure to 

verify whether the packet length is valid when processing 

JOIN ACCEPT response packets. The vulnerability exists 

in the process of OTAA, which can cause harm to the 

devices that are joining the network. For deployed projects, 

it is necessary to rejoin the network, which needs to be 

combined with other attack methods.

The obvious advantage of this vulnerability is that we can 

launch attacks without knowing the appkey and achieve 

a widespread denial of service by sending malicious radio 

packets.
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Send radio packets to nodes

Because of the low power consumption of lpwan, they are not always online, so attacking 

such devices requires a specific cycle.

The receive window for class a devices is defined in the lorawan specification. After 

the device sends the uplink packet, two short receiving windows will be opened, and 

the lora packet will be processed only when it is received in the receiving window. In 

addition, the downlink channel is also different in different areas. For example, in CN470, 

RX1 Channel Number equals Uplink Channel Number modulo 48.

Therefore, after calculating the appropriate delay and channel, you can really launch an 

attack.

 

Figure 10 

Downlink 

Channe of 

CN470

Figure 11 

The Receive 

Window for 

Class A

Debug

After having the ability to send malicious radio packets, we can select some development 

boards as the environment for loramac-node debugging. We can choose the P-NUCLEO-

LRWAN1 development board as the test equipment, which provides MCU, expansion 

boards, and stlinks. VS CODE and openocd are used to debug the software. This 

development board is very suitable for debugging the protocol stack. Can help us quickly 

verify the vulnerability.

Figure 12 P-NUCLEO-LRWAN1 Development Board
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Our Practice

We chose a temperature sensor as the target to test it. The attack flow is as follows: 

when the temperature sensor sends an uplink OTAA packet, our hijacker sniff the radio 

packet and notify the local server. 

After calculating the downlink channel and delay, the local server sends the malicious 

packet to the hijacker. The hijacker sends it to the device after an appropriate delay. At 

this point, the sensor receives malicious packets, triggers related vulnerabilities, and the 

device denies of service. 

The above is the practice of the loramac-node vulnerabilities we found in the actual 

device. We believe that lpwan equipment is used very much and is mostly used in 

unattended scenarios such as smart cities and agriculture. Even denial of service has a 

great impact.

Figure 13 Attack Flow of Our Practice

Security Analysis of LoRa Basics™ Station

LoRa Basics Station is new state-of-the-art gateway packet-forwarder. Compared with 

traditional components, it defines two protocols, CUPS and LNS. Cups is used to upgrade 

Basics Station, and the protocol format generally includes length and data. 

LNS uses websocket to establish a long connection with the server, and the server can 

send data to the gateway. In theory, if TLS Pinning is used, it will be safer.

The main risks are as follows:

1. This component does not enable authentication mode by default, so a lack of 

security awareness of the deployer may lead to man-in-the-middle hijacking.

2. The LNS protocol contains powerful capabilities and may be at risk of abuse.  

The server is fully trusted in the LNS protocol. Therefore, even if TLS is enabled, 

a malicious server can still abuse the capabilities of the LNS protocol, , such as 

remote code execution

3. CUPS itself has memory or logic vulnerabilities when processing data, which 

can lead to security risks.

From the documentation, The LNS contains remote commands. Although this is helpful 

for remote management of gateways, it may be abused and lead to security risks. 

Therefore, we can RCE by hijacking or malicious servers to send packets to the gateway 

components.

Chirpstack: Risk of Abusing the Default Configuration

The default configuration of Chirpstack is a security risk. If the server deployer does not 

read the instructions carefully or does not have security awareness, it will lead to the risk 

of an attack on the server. 

For example, the default weak password may be used in the database, web. If an attacker 

can enter the web service of the application server with a weak password, he can obtain 

sensitive device information, such as device data, appkey, etc. 

In addition, some MQTT and gRPC services are not authenticated, which can lead to 

permissions or data disclosure. We verified these security risks in April last year.

We searched the current network and found that the deployment of Chirpstack servers 

showed a growing trend, these security risks are worthy of our attention.

MQTT integration is usually used by managers to manage the deployed lorawan solution. 

In the default configuration of MQTT broker, the username, password and ACL are 

optional. Therefore, incorrect configuration may bring the following security risks:

1. Attackers can subscribe to any topic through wildcards. In this way, the data of 

the interaction between the device and the server can be obtained, including 

device information.

2. After knowing the device information, the attacker can also forge downlink 

data and send it to the node through MQTT.

LoRaWAN-stack: Security issues of open source code

In addition, UDP parsing logic of the lorawan-stack code may be an attack surface. By 

Sending a malicious UDP packet causes the server to crash when the gateway id is 

known. This is also a way to attack the server.
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SECURITY INTERNAL OF NB-IOT

Nbiot chips are highly integrated, usually soc. It contains different chip architectures and 

RTOS.

In addition, the nbiot protocol is far more complex than lorawan. The entire protocol 

stack includes baseband, TCP/IP, and applications. The baseband includes the physical 

layer of nbiot, and the upper layer follows the protocol of LTE.

In the nbiot network, there are black boxes in the EPC/eNB/IoT Cloud Platform, which 

brings a lot of challenges to the security research.

Figure 14 Protocol Stack of NB-IoT

Architecture of NB-IoT Chip (A)

It is a multi-core architecture, each core 

using ARM Cortex-M0. The three cores are 

used for different purposes and each core 

has its own RTOS for task scheduling. 

Core A contains the application layer 

protocols in the TCP/IP protocol stack such 

as DTLS,COAP,LWM2M. In addition, it also 

includes the application layer, which is used 

to provide module vendors to develop the 

corresponding AT library or application 

development. APPS can only provide AT 

command interface, so that external MCU 

can interact with nbiot chip or module 

directly through AT command. In this way, 

the development of the application is 

mainly focused on the external mcu. 

Core B mainly deals with lower-level 

protocols, including baseband, such as 

NAS,RRC,L2/L1 related to NBIOT, and uses 

lwip as the tcp/ip protocol stack to provide 

socket wrapper function for core A.

Core C is mainly to provide some security 

capabilities. Including the security check 

needed by security boot,FOTA and so on. 

The manufacturer involves a set of RPC 

mechanism, which uses shared memory to 

realize the interworking of data between 

cores.

Architecture of NB-IoT Chip (B)

The other chip architecture is implemented 

in a single-core way. Take chip B as an 

example, which uses ARM Cortex-M4. The 

entire core is divided into two domains, 

including the application domain and 

Modem domain. It is very similar to the 

division of AP and Modem in mobile 

phones. 

Each domain uses a different RTOS for 

task scheduling. The application domain 

includes the entire TCP/IP protocol stack 

and the upper application. C

ompared with chip A, it also uses the 

lwip library as the TCP/IP protocol stack 

implementation, but it belongs to the 

application domain together with the upper 

layer protocol. Modem domain is mainly 

related to baseband processing. The two 

domains communicate with each other by 

sharing queues. Bootloader is also included 

in this core.

Similarly, the APP layer in the application 

domain can provide only the AT command 

interface for external MCU to operate 

through the AT command.

Attack Surface of NB-IoT Module

After our reverse analysis, we found that 

even though different vendors adopted 

different architectures. But some technical 

implementations are similar. We summarize 

the attack surface of NBIOT chip. 

There are three categories. The first 

category is related to TCP/IP, which may use 

the same third-party libraries or implement 

specific logic based on the same standards. 

The other is related to baseband, where 

the technology implementation is related 

to chip vendors, each of which has its 

own implementation and will not use open 

source third-party libraries. It is more difficult 

to find this kind of software vulnerability. 

Another category is the risk of inter-

core communication or inter-domain 

communication. Most of the codes 

we mentioned here belong to chip 

manufacturers. Module manufacturers 

mainly work in APPS. 
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In addition to the attack surface introduced here, the application processing logic 

developed by the equipment manufacturer will also have security risks. But because 

the program developed by the equipment manufacturer is not a common component, 

we will not introduce it here. If you want to attack programs developed by equipment 

vendors, you can choose vendors with a high market share.

Our Practice

Because the nbiot chip is highly integrated and the technology is closed, it is difficult for 

us to purchase the evaluation board of the chip for debugging. Therefore, we can only 

get the running status of the chip by log and debug it. 

Manufacturers have provided useful software to view logs. Through the log, we can 

see some output inside the chip, including the status of the baseband, the output of 

the application, and so on. It is a little helpful for us to understand the program flow and 

verify software vulnerabilities.

We made some attempts to send packets to the nbiot chip. Different testing schemes 

are adopted according to different protocol stacks. If it is a TCP/ip-related test, we use 

raspberry pie and SIM card to access the network for testing. 

For baseband related tests, SDR and SIM cards can be used for testing. We can use 

open source projects for testing, but the compatibility is not very good at present. At the 

same time, we can also buy nbiot base stations for testing, but this is not easy. There are 

still many challenges to overcome throughout the testing process.

SECURITY ADVISE

In this section, we will provide some security suggestions 

about the LPWAN supply chain.

For LoRaWAN, we believe that node developers should use 

the latest version of the protocol stack for development. 

The development and deployment of gateways need to 

enable authentication and encryption mechanisms. The 

service provider should clear the weak password, enable 

authentication, and validate the input data with the open 

port.

For NB-IoT, we believe that chip / module vendors should 

update third-party libraries or chip firmware in a timely 

manner. When using coap and mqtt as communication 

protocols, TLS and authentication should be adopted to 

improve security.

In the part of EPC, operators should make a good network 

access policy to improve the security of the network. □

Figure 15 TCP/IP Testing Tool Figure 16 Baseband Testing Tool
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EXPLOITING 
QSEE, 
THE 

RAELIZE 
WAY!

Cristofaro Mune and Niek Timmers

INTRODUCTION

The Qualcomm IPQ40xx family of chips, 

which includes the IPQ4018, IPQ4019, 

IPQ4028 and IPQ4029, are popular System-

on-Chip (SoC) solutions for consumer and 

enterprise networking products. Many 

devices like the ASUS RT-AC58U, Cisco 

Meraki  MR33 and Aruba AP-365 use an  

IPQ40xx  chip as the main System-on-Chip 

(SoC) in their design. 

The OpenWRT Project supported device 

database shows at least 34 products, 

manufactured between 2018 and 2020, 

that are designed around a IPQ40xx chip. 

The total number of products is likely much 

larger as many devices, like the Netgear 

Orbi RB20, are not supported by OpenWRT 

and therefore not included in the database.

We often analyze networked devices and 

it’s not surprising that an IPQ40xx-based 

device found a way to our lab. We     got 

extremely interested once we recognized 

that this SoC supports Secure Boot and a 

Trusted Execution Environment (TEE) made 

by Qualcomm (hereinafter simply referred 

to as ‘QSEE’).

During the last decade, the availability 

of devices with a TEE has increased, 

answering the need for securing the 

execution of critical code on multi-purpose 

devices. Most, if not all, mobile phones 

include nowadays a TEE to support   the 

implementation of multiple security critical 

use cases in parallel. The mobile phones 

based on Qualcomm Snapdragon SoCs 

typically implement QSEE as well. 

Moreover, TEE implementations are also 

present on devices like Smart TVs (e.g. 

for DRM), set-top-boxes (e.g. for PayTV) 

and even ECUs used by modern vehicles. 

Still, the availability of a TEE on     a 

consumer networking product, like the 

Linksys EA8300, is somewhat surprising. 

Differently from Secure Boot, any use case, 

other than providing an additional layer of 

security, has not clearly emerged yet.

We’ve analyzed multiple IPQ40xx-based 

products and found QSEE implemented on 

all of them.  However, this does not imply 

that QSEE is actually actively used once 

the device is fully initialized. For example, 

the Linksys EA8300 is only communicating 

with QSEE during boot. We believe the 

IPQ40xx SDK includes QSEE by default and 

therefore    is therefore always initialized by 

the Qualcomm bootloaders. This means, 

an OEM like Linksys, may only have limited 

control or insights whether QSEE is present 

on a product or not.

We identified multiple critical vulnerabilities 

for which the following CVEs were 

assigned: CVE-2020-11256, CVE-2020- 

11257, CVE-2020-11258 and CVE-2020-

11259. We successfully exploited all these 

vulnerabilities and we were able to execute 

arbitrary code within QSEE, effectively 

compromising the security of this additional 

layer of protection.

These software vulnerabilities can easily 

be fixed using a software update, even to 

devices already in the field. Therefore, we 

decided to test if the Qualcomm IPQ40xx 

chips are vulnerable to Electromagnetic 

Fault Injection (EMFI). This type of attack 

is able to break any software security 

model by altering the expected behavior is 

possible. 

We determined after a week of testing that 

these chips are indeed vulnerable and can 

https://www.qualcomm.com/products/ipq4018
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be used by an attacker to execute arbitrary 

code within QSEE without relying on any 

software vulnerability.

As far as we know, this is one of the first 

public examples, where hardware fault 

injection is used to break the security 

model of a TEE, by altering the intended 

behavior of software. We reported both the 

software and hardware vulnerabilities in 

Qualcomm using a coordinated disclosure 

process (Q3 2021). 

Qualcomm indicated that fixes for the 

software vulnerabilities were distributed 

to their customers. However, they also 

indicated that FI attacks are out of scope 

of the chip’s threat model. Therefore, an 

attacker capable of injecting EM glitches, 

is always able break into QSEE, without 

relying on any software vulnerability.

TARGET

Figure 1: Qualcomm IPQ4019 SoC

The Linksys EA8300 is a AC2200 Wi-Fi 

Tri-Band Router. Some of the information 

we used was obtained from Open WRT’s 

website and FCCID’s website. This device 

is designed around the Qualcomm IPQ4019 

SoC which is shown in Figure 1.

Our interest was immediately sparked 

after reading its product description as 

it supports two of our favorite security 

features: Secure Boot and TEE. 

It’s always interesting to start analyzing a 

new device in a black-box setting and with 

much anticipation we were looking forward 

to the activities ahead of us. We never know 

what exactly to expect, but we may easily 

end up into our favorite activity: identifying 

and exploiting vulnerabilities.

Serial Interface

Hardware hacking often starts with opening 

the device. The next step is scoping out 

useful signals like the serial interface, which 

often provides a (root) shell on consumer 

networking products. 

It would not be the first time such interface 

is clearly marked on the on the printed 

circuit board (PCB). For the Linksys 

EA8300, the serial interface is present on 

an unpopulated connector that’s easily 

accessible as is shown in Figure 2.

Figure 2: Serial interface on the Linksys EA8300 

Conveniently, the pin-out and other information required

for communicating with the serial interface can be found on OpenWRT’s website. This 

spares us the probing of the pins for determining the required parameters. There’s no 

harm done standing on the shoulders of others!

Boot Log

After connecting to the serial interface, we observe what’s send over this communication 

interface by the device during boot. Immediately we are presented with a stream of 

interesting print statements. The printing during boot, shown in Listing1, is done by the 

boot stages developed by Qualcomm: PBL and SBL1.

Listing 1: Boot printing by PBL and SBL1

If you are familiar with Qualcomm-based devices, you may recognize the typical boot 

flow where the PBL and SBL1    are printing timestamped log lines. If you’re interested, 

more details about the boot process of Qualcomm-based mobile phones is provided by 

this great blog post by Quarkslab.

However, the boot process of our target device has more commonalities with older 

mobile phones, as shown in this advisory (2017) by Aleph Security.

Once the execution of the SBL1 completes, the control is passed to the U-Boot bootloader, 

which is a common boot stage for loading Linux. Conveniently, we were able to break 

into the U-Boot console by pressing a key during boot, which is shown in Listing2.
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Listing 2: Boot printing by U-Boot

The U-Boot console typically includes very useful com- mands. However, it really depends 

on the device which com- mands are really available, as the manufacturer is free to add 

or remove commands. Luckily for us, the U-Boot console on this target is fairly rich and 

we are presented with lots of useful functionality.

ARM TRUSTZONE

In order to have a clear understanding of the different security boundaries, let’s quickly 

revisit some TEE basics. The Rich Execution Environment (REE), or Non-secure  World, is 

the environment where the typical user applications are executed. The Security Extensions 

of the ARMv7-A architecture, i.e. ARM TrustZone, introduce support for an additional 

Trusted Execution Environment (TEE), or Secure World, which is the environment where 

the security critical applications are executed.

The underlying platform, in other words the hardware, is responsible for providing 

adequate functionality to securely implement both these environments. These two 

environments are distinguished by the Non- Secure (NS) bit (i.e. SCR.NS). This bit set to 

1 for execution of REE code and set to 0 when executing TEE code. 

Figure 3: ARM TrustZone

The transition between these two execution modes is governed by the Monitor mode, 

which traps the execution of Secure Monitor Call (SMC) instructions. More details about 

this technology is available in ARM’s Architecture Reference Manual for the ARMv7-A 

architecture.

When the IPQ40xx is released from reset, execution starts at the highest level of privilege. 

This allows the code to have unrestricted access to the hardware. 

The Primary Boot Loader (PBL), implemented in the SoC’s read-only memory (ROM), 

loads the second stage bootloader (SBL1) into internal SRAM.  The SBL1 is responsible 

for several things, including initializing the external DDR, loading QSEE from flash and 

loading U-Boot from flash.

It’s important to raelize that the PBL and SBL1 are executed at the highest privilege 

level as they are responsible for loading the QSEE. Moreover, it’s likely that the U-Boot 

bootloader is running at a much lower privilege as it’s mostly responsible for loading 

Linux.

EXTRACTING QSEE BINARY

The U-Boot console provides a convenient and powerful environment for accessing the 

flash. For example, we can use the smeminfo command in order to get an overview 

of the flash partitions, which is shown in Listing3. The QSEE binary that we are after is 

actually stored in a dedicated partition.

Extracting the flash contents is fairly easy using the com- mands provided by the U-Boot 

console. First, we use the nand command to read the flash contents to volatile memory 

(e.g. SRAM or DDR). 

Then, we use the tftpput command to dump the flash contents from volatile memory 

via the network to our TFTP server. This allows us to extract the entire flash without any 

soldering. 

Listing 3: U-Boot’s smeminfo command
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ANALYZING QSEE

The QSEE partition is actually a flat binary 

that can be analyzed directly using your 

favorite decompiler.  Unfortunately, being 

a flat binary, there is no meta data present 

in the binary which could tell us about its 

structure. 

We know that the IPQ40xx processor 

implements the ARMv7 architecture and 

therefore we know to expect ARM AArch32 

Little Endian (LE) code. We load the QSEE 

binary into IDA Pro and select the ARM32 

Little Endian architecture. We determined 

that the loading address of the QSEE binary 

is 0x87E80000 by analyzing the absolute 

addresses used by the code.

The ARMv7 exception vector is found at the 

start of the QSEE binary. It’s used to handle 

the processor’s exceptions, including the 

exception raised by a SMC instruction. This 

mechanism is standardized and therefore 

we could easily define the correct names 

for each exception handler as is shown in 

Figure 4.

The code responsible for handling the 

SMC instruction is easily identified by 

following the Software Interrupt exception 

handler. This code extracts the SMC  ID  

from  register  R0 in order to determine  

which  SMC  handler  routine  should  be 

called. We determined that all SMC handler 

routines are defined in a table located at 

address 0x87EB465C in the QSEE binary 

as is shown in Figure 5.

Each of  the  SMC  handler  routines  can  

be   called   using   their   unique   SMC   ID,   

which   is   also   present   in the table. For 

example, the SMC handler routine tzbsp_

pil_init_image_ns can be called by using 

the SMC ID 0x805. The table also contains 

Top: Figure 4: QSEE exceptions; Bottom: Figure 5: ARM TrustZone

other useful information for reverse 

engineering the code, like the name of the 

SMC handler routine.

RANGE CHECKS

The memory is partitioned in Secure and 

Non-secure mem- ory, using hardware 

controllers that are configured when the 

TEE is initialized. This is likely done by the 

SBL1 bootloader during boot. 

All code and data related to QSEE, including 

any Trusted Application (TA), should be 

stored within secure memory. In other 

words, none of the code and data used by 

QSEE should be accessible by the REE.

The REE passes the SMC handler routine’s 

arguments by register. For example, ARG1 

is stored in register R1, ARG2 is stored in R2 

and so on. Buffers are passed by reference 

using memory that’s accessible by both the 

REE and TEE. 

Typically, this is simply just non-secure 

memory. As QSEE has no knowledge of the 

REE’s virtual mapping, all pointers passed 

by the REE point to physical memory.

It’s the responsibility of QSEE to carefully 

check the arguments received from the 

REE. For example, QSEE should check 

whether the buffer passed by the REE, 

described by a pointer and a size argument, 

is not located within secure memory. 

Otherwise, it may be possible to read or 

write secure memory from the REE. While 

analyzing the SMC handler routines, we’ve 

identified the functions responsible for 

performing these range checks as is shown 

in Figure6.

The function tzbsp_is_nsec_range 

validates the buffer passed by the REE Figure 6: Usage of a range check
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using the is_allowed_range function. This function uses a table with secure ranges to 

determine what memory should be considered secure memory. 

This function checks, among a few other things, if the start   of the buffer (i.e. pointer) and 

end of the buffer (i.e. pointer + size) are overlapping with secure memory as is shown in 

Figure 7 below.

The table, that defines three secure ranges, is shown in Figure 8 below.

This means, that whenever thetzbsp_is_nsec_range function is used to check the SMC 

handler routine’s arguments, the buffer passed by the REE cannot overlap with:  0x0 to 

0x7ffffff, 0x90000000 to 0xffffffff  and  0x87E80000 to 0x87ffffff. In other words, buffers 

are only allowed when they are between 0x80000000 to 0x87E80000 and between 

0x88000000 to 0x90000000. Until now, everything looks secure!

Figure 7: is allowed range function

Figure 8: Secure Range Table

QSEE SW VULNERABILITIES

It’s expected that functionality exists 

to check the arguments passed to the 

SMC handler routines. However, it would 

definitely not be the first time that such 

functionality is not used, or used incorrectly. 

Therefore, it’s always a good idea to start 

analyzing the correct usage of such checks 

first.

Long story short, we’ve identified several 

SMC handler routines where the arguments 

are not properly checked. There were 

either no range checks, or they were used 

incorrectly. This resulted in the identification 

of 4 critical vulnerabilities.

• CVE-2020-11256 tzbsp blow fuses 

and reset

• CVE-2020-11257 usb calib

• CVE-2020-11258 tzbsp  version  set

• CVE-2020-11259 tzbsp  version  get

The above vulnerabilities require the ability 

to issue an SMC request to QSEE, either 

directly or indirectly. 

“Directly” can be achieved by executing any 

code in the REE with sufficient privileges to 

execute an SMC instruction (i.e. kernel or 

even higher privileges). 

“Indirectly” can be achieved by leveraging 

functionality that’s already present on the 

device (i.e. a driver). An attacker that’s able 

to successfully exploit the vulnerabilities, is 

able to:

• get unrestricted access to the 

underlying hardware

• gain full control of QSEE and the 

assets it protects

• escalate privileges in the REE (e.g. 

from user to kernel)

• bypass any security features 

implemented by QSEE (e.g. IPS, AV)

As far as we can tell, the Linksys EA8300 

does not use QSEE for anything relevant 

during runtime. Also, no Trusted Application 

(TA) is installed. 

This means the attack surface from an 

unprivileged REE application is likely 

minimal (i.e. QSEE can only be accessed by 

executing SMC instructions directly).

More information about the exploitation of 

these vulnerabilities were already disclosed 

duringZer0con 2021. We will disclose this 

information also on the Raelize Research 

Blog.

These software vulnerabilities can be 

easily fixed and Qual- comm indicated that 

their customers were  informed  about the 

availability of such fixes. In anticipation 

of the fixes, we decided to explore the 

presence of a hardware vulnerability.

QSEE HW VULNERABILITIES

We decided to analyze the resilience of 

this chip towards fault injection attacks. We 

used Electromagnetic Fault Injection (EMFI) 

to inject glitches into the chip in order to 

affect its intended behavior. 

This allows us to change the software 

that’s executed by the IPQ40xx processor 

in order to bypass or alter the security 

measures in software (e.g. range checks). 

Effectively, this allows us to break into 

QSEE from the REE without relying on any 

software vulnerability.
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Setup

We use commercially available tooling to perform the EMFI attack. An overview of the 

setup is shown in Figure 9 and a photo of the setup is shown in Figure 10.

Figure 9: EMFI setup (block diagram)

Figure 10: EMFI setup

We use software to program both the 

Riscure Spider and the Riscure XYZ Table 

before each experiment. This allows us 

to control the glitch parameters (position, 

moment in time and glitch power) completely 

automatically. To reset the target, we use a 

relay to switch power supply of the device.

We perform the EMFI attack by placing the 

EM probe directly on the chip’s surface. In 

order to do so, we opened   up the target 

and removed the chip’s heatsink. We made 

no other physical (invasive) modifications.

Characterization

We started with a characterization phase 

aimed to find a location on the chip’s 

surface where we can influence the target. 

We implemented test code as a U-Boot 

standalone application, hence running with 

REE privileges (i.e. NS-bit    is 1). This allows 

us to efficiently explore the resilience of 

the chip in a controlled environment. We 

use the XYZ stage to move the EM probe 

automatically across the chip’s surface in 

a 10x9 grid in order to find a vulnerable 

location.

The test code implements the following 

steps:

1. Set register R0 to 0

2. Set trigger signal high

3. Execute 10,000 add instructions 

(i.e. add R0, R0, #1)

4. Set trigger signal low

5. Print the value stored in R0 on 

the serial interface

To synchronize the attack, we use the GPIO 

pins driving the target’s LEDs as a trigger to 

time the attack. We time the glitch so that 

it’s injected when the add instructions are 

executed. If the test code prints a value 

different than the expected value (i.e. 

0x2710), we consider the glitch successful, 

as the glitch somehow altered the intended 

execution of the code.

After performing roughly 20,000 

experiments we observed different outputs 

which we grouped as is shown in Table 1.

Table 1. Characterization results

Not all outputs we observed are shown, 

just a few interesting ones.

• The C-00 experiments give the expected 

output, indicating the glitch did not affect 

the execution of the test code.

• The C-01 experiments showed no 

output as the chip muted, indicating 

the glitch was likely too strong, leaving 

the system in an unresponsive state.

• The C-02, C-03 and C-04 type of 

experiments show a different counter 

value than expected. This indicates 

that the injected glitch affected the 

expected behavior of the software. 

We consider these successful 

experiments.

• The C-05 and C-06 experiments 

caused a processor exception. These 

are interesting as well as they are an 

indication that we affected the chip’s 

intended behavior, but in a crash, as 

the system was unable to continue 

execution reliably.
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We plotted the results based on their classification (see Figure11). Next to the plot there 

is the orientation of the chip. We observe that all successful results occurred in a specific 

area on the chip’s surface.

We assume that the location that allows us to inject successful glitches into the REE (i.e. 

U-Boot) will also yield successful glitches for the TEE (i.e. QSEE) as both code bases are 

executed by the same processor. Therefore, we simply fix the probe on a location where 

we observed a successful glitch. This allows us to continue testing the TEE execution 

without moving the probe, effectively removing the spatial parameter from the glitch 

parameter search space.

Bypassing range checks

We decided to bypass the SMC handler routine argument check for tzbsp fver get 
version() to demonstrate the effectiveness of fault injection to break into QSEE. 

This function is decompiled in the (simplified) pseudo-code by IDA Pro as is shown in 

Listing 4. The is_ree_range() function is used to verify if the argument a2 points to a 

16-bytes memory range fully contained in REE memory. 

Our goal is to bypass the restriction enforced by this function using EMFI in order to write 

a 0 to an arbitrary location. Such writes are performed by TEE code, yielding a controlled 

NULL write to arbitrary TEE memory. 

Being able to bypass the range checks, it’s likely that the security of QSEE is compromised 

and that arbitrary code execution can be achieved.

In order to access the tzbsp_fver_get_version() function, we use the test code, 

implemented as a U-Boot standalone application (see Listing 5).

Figure 11: Experiments plotted across the chip’s surface

Listing 4: Decompiled tzbsp fver  get  version  

function 
Listing 5: Decompiled tzbsp  fver  get  version  

function 

We inject the EM glitch between the moment the trigger signal is set and the trigger 

signal is unset. During this time frame, we execute the SMC call for the first time using 

specifically chosen arguments.

• The argument arg1 is set to a value so that the do/while loop shown previously in the 

decompiled code does not write to the a2 pointer.

• The argument arg2 is set to a TEE memory address where configuration and flags 

for the secure memory range (0x87e80000 to 0x87ffffff) are stored. If bit 1 of the 

flag field is not set the secure range is ignored. In other words, if we unset bit 1, the 

is ree range() functions does not enforce protection for the given range. This, in turn, 

allows to pass any physical address to SMCs, including TEE, potentially allowing for 

unintended access to TEE memory.

• The argument arg3 is set to 4 to satisfy a check in the SMC command’s code.

• The argument arg4 is not used.

We execute the same SMC command a second time, with the same destination address, 

without injecting any glitch, in order to verify whether the secure range is really disabled   

and our attack was successful. 

Moreover, we dereference the secure range flag field from REE, in order to verify that the 

malicious TEE write actually happened.

It should be noted that, due to the (mis)configuration of  this specific device, we are able 

to read TEE memory from  the REE. Typically, this should not be possible, otherwise any 

secrets handled by the TEE are exposed to the REE. 

For this particular device this is not an issue because as far as we know no secrets are 

handled by the TEE. We leverage this capability to double verify our test as we can read 

the TEE memory address before and after the attack.
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The output we receive back consists of:

• Return value of the 2nd time we call 

the SMC command 

• Return value of the 1st time we call the 

SMC command

• Dereferenced secure range flag field

• Marker (i.e. AAAA)

• Marker (i.e. BBBB)

We anticipated the outputs of our attack code as outline in Table2.

We measured the trigger 

signal using an oscilloscope 

and determined it’s 

approximately 5.875 

microseconds (Fig 12). Our 

target, the range check, must 

be executed somewhere 

within this attack window. 

Therefore, we inject all our 

glitches within this attack 

window.

We performed roughly 

300,000 experiments where 

we inject EM glitches within 

the entire attack window. 

We give each experiment a 

randomized power between 

0% and 100%. 

The EM probe itself is fixed 

to a vulnerable location on 

the chip’s surface that we 

identified earlier. This entire 

campaign lasted roughly 12 

hours.

We plotted all experiments 

as shown in Figure13. 

The expected results are 

plotted in GREEN, processor 

exceptions are shown in 

MAGENTA, mutes are shown 

in YELLOW and successful 

results are shown in RED. 

Table 2. Anticipated responses

Figure 12: Trigger signal

Figure 13: Attack Results

The glitch delay, shown on the X-axis, is the time we wait before we inject the glitch 

relative to the moment in time where we observe the trigger signal. The glitch power is 

a percentage proportional to the maximum power of our EM probe.

If we simplify the plot, we observe three interesting areas.

• At area 1 we observe many (REE) processor exceptions, likely caused by the fact 

that we inject the glitch too soon before the context switch to the TEE is made.

• At area 2 we observe many mutes and successful exper- iments, indicating at this 

moment the code is executed that we attack.

• At area 3 we observe many (REE) processor exceptions, likely caused by the fact 

that we inject the glitch after the context switch to the REE is made.

The success rate with our initial glitch parameters (location, moment in time and power) 

is 0.05% or, differently said: 1 successful experiment every 5 minutes.

However, if we tune the glitch parameters (i.e. glitch delay and glitch power) to area 2, the 

success rate is 5%. Differ- ently said, 1 successful experiment every 20 seconds. More 

interestingly, we are able to bypass the range range check with a very high success rate. 

We feel comfortable saying that we are able to bypass all the range checks used by 

QSEE using this method.

Achieving code execution

From exploiting the software vulnerabilities mentioned ear- lier in this article, we know 

that bypassing the range checks is sufficient for executing arbitrary code within QSEE. 

The range table used by the range check is stored in writable memory and therefore we 

can leverage restricted writes to disable the range checks entirely.

Then, we can leverage a combination of QSEE handler routines in order create an 

arbitrary R/W primitive. This allows us to copy any data to and from QSEE memory. Using 

this R/W primitive we can change the data used by a specific QSEE handler routine 

in order to achieve arbitrary code execution at the same privilege level as QSEE. The 

process is as follows:

• Store shellcode in non-secure memory at 0x82000000

• Modify the MMU configuration to clear the XN-bit for 0x82000000

• Set the function pointer used by tzbsp_exec_smc to 0x82000000

• Use tzbsp_exec_smc to jump to 0x82000000 in order to execute the shellcode

More information about this exploitation approach will be provided on the Raelize 

Research Blog on the Raelize website.
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CONCLUSION

We’ve identified both software and hardware vulnerabilities, affecting 

Qualcomm’s TEE named QSEE, as implemented on Qualcomm IPQ40xx-based 

devices. These vulnerabilities enable an attacker to execute arbitrary code at 

the highest privilege level. We reported all vulnerabilities to Qualcomm using 

a responsible disclosure process.

We’ve identified the software vulnerabilities by reverse engineering the 

QSEE binary that we’ve extracted from multiple devices. Even though these 

vulnerabilities were critical, they can be easily fixed using a software update, 

which can be distributed to devices already in the field. Therefore, we 

anticipate these vulnerabilities to be fixed in the future.

However, the hardware vulnerability, which can be exploited using EM 

glitches, cannot be easily mitigated, especially not for devices already in 

the field. Qualcomm indicated to us that these types of attacks are outside 

of the IPQ40xx’s threat model. Therefore, an attacker capable of injecting 

EM glitches, will always be able to break into QSEE, without relying on any 

software vulnerability.

The impact of software vulnerabilities is typically much larger than hardware 

attacks that require physical access to a device. Mass exploitation is for 

example typically not possible. 

Nonetheless, we like to stress that hardware attacks should not be immediately 

omitted from the threat model of a device. They are often used by attackers to 

get access to secured code or data in order to perform subsequent research 

during which easier to exploit (software) vulnerabilities are identified. □

HOW I FOUND 
16 MICROSOFT 
OFFICE EXCEL 
VULNERABILITIES 
IN 6 MONTHS
Quan Jin

INTRODUCTION
At the beginning of 2020, I decided to learn something 

about fuzzing. I first read some papers about fuzzing, 

include “Finding security vulnerabilities with modern 

fuzzing techniques” . After learning the basic concepts 

about fuzzing, I decide to do some fuzzing job on Windows 

platform.  My goal was to get a CVE number from Microsoft 

through fuzzing.

This could be your product.

Contact us for branding opportunities.
editorial@hackihackinthebox.org

http://archive.hack.lu/2018/Slides_Fuzzing_Workshop_Hack.lu_v1.0.pdf
http://archive.hack.lu/2018/Slides_Fuzzing_Workshop_Hack.lu_v1.0.pdf
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Fuzzers

There are many fuzz tools for linux platform, such as AFL, LibFuzzer and Honggfuzz, but 

there are less fuzz tools on Windows. WinAFL is a great tool, however it cannot handle 

large and complex software such as Microsoft Office.

Over the past three years, hundreds of bugs on Windows were found by WinAFL, which 

means there are basically no chance to find more bugs through it. Some researchers 

make some improvements on WinAFL, and find more bugs based on their custom WinAFL. 

From my perspective, I want to choose a target which is less targeted by WinAFL and I’m 

familiar with this target.

Choose a Target

There are several candidates: Adobe Reader, Internet Explorer and Microsoft Office. 

Let’s review them one by one.

• Adobe Reader was heavily fuzzed by WinAFL at the year of 2018

• Internet Explorer was heavily fuzzed by Domato during 2017, 2018 and 2019

• Few people have done effective Office fuzzing work, but there do have some, such 

as Jaanus Kaap’s presentation at POC2018

It seems that Microsoft Office is a good candidate. But here comes two questions:

1. Is it possible to find a bug in 

Microsoft Office on several 

months for a newcomer in 

fuzzing? 

2. Microsoft Office consists of 

multiple components, should I 

choose Word, PowerPoint, Excel 

or another component to fuzz?

Let me first answer the first question. I’m a 

newcomer in fuzzing, but I have extensive 

experience in office vulnerability analysis. 

So, it’s possible for me to find a bug in 

Microsoft Office.

To answer the second question, I counted 

the Microsoft Office CVE numbers and their 

distribution from 2017 to 2020. The initial 

statistical time is up to April 2020, I updated 

the statistical data in June 2020. 

Here is the up to June 2020 statistical results:

Note: The column “Office” represents Office vulnerabilities that do not specify specific components. 

Which means that they may be Word, PowerPoint, Excel, Outlook or other vulnerabilities.

We can learn something from the table:

1. Around 2018, Microsoft made a 

change to the disclosure name 

of Office vulnerabilities to make 

the classification more detailed;

2. From 2017 to 2020, the Excel 

component has the most 

vulnerabilities almost every year;

3. From 2017 to 2020, the 

PowerPoint component has the 

least vulnerabilities almost every 

year

If a security researcher invests the same 

amount of time in security testing for each 

Office component, Excel is obviously the 

most hopeful one, and PowerPoint is the 

least. Word and Outlook are in the middle. 

If I can choose only one target, it will be 

Excel.

METHODOLOGY  AND  
IMPLEMENTATION

Now, I have selected Excel as my target. 

Before starting fuzzing, I need to evaluate 

the feasibility of the basic steps involved 

in Excel fuzz. A common fuzzing process 

usually includes the following stages:

1. Seeds - How to collect seeds?

2. Mutator - How to mutate?

3. Detection - How to catch 

exceptions?

4. Triage - How to classify and de-

duplicate crash files?

5. Reproducer - How to reproduce 

the crash?

6. Report - How to report the 

vulnerability to the vendor?

Let’s examine them one by one.

Seeds

Before fuzzing Excel, I need to collect some 

Excel files as seeds. After counting the file 

types involved in the Excel vulnerabilities 

announced by ZDI in the last 3 years, I 

realized that the proportion of vulnerabilities 

in the OpenXML format is far less than that 

of the OLE2 format, So I began to focus on 

xls files. After some exploration, the source 

of my seeds is as follows:

1. Contextures (https://www.

contextures.com)

2. Vertex42 (https://www.vertex42.

com)

3. Excel files provided by Jaanus 

Kaap (https://foxhex0ne.com)

Many fuzz tutorials tell us that the more files 

are not the better, nor the bigger the better. 

So I need to minimize the collected Excel 

files. If the fuzz tool is WinAFL, you can use 

the built-in components to distill the seed 

files. I don’t want to use WinAFL, so I need 

to implement this function by myself.

While trying to solve the above problem, I 

saw two blogs by Jaanus Kaap:

• Let’s get things going with basics of 

file parsers fuzzing

• Let’s continue with corpus distillation

Unfortunately, at the time of writing this 

presentation, these blogs are no longer 

accessible, but I read these two articles in 

detail at that time. 

Although it is no longer possible to obtain 

relevant knowledge from the author’s blog, 

Jaanus Kaap once shared his experience 

at the POC2018 Conference entitled □ 

https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://research.checkpoint.com/2018/50-adobe-cves-in-50-days/
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/domato
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2018/12/on-vbscript.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1947
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“Document parsers ‘research’ as passive 

income.”

However, the ideas of corpus distillation 

are similar between different tools: for the 

software you want to fuzz, first select a 

module, then use the tools and initial seeds 

to make statistics on the module coverage. 

The goal of this is to select the smallest 

number of files with the highest module 

coverage, and hope that these files are as 

small as possible.

With the help of static count and dynamic 

execution, I distilled a set of Excel seeds in 

an acceptable time as the initial seeds for 

my fuzzing.

Mutation

Mutation algorithm is an important part 

of fuzz, and its quality directly affects the 

result of fuzz. 

I transplant the following mutation 

algorithms in Honggfuzz:

• mangle_Bit

• mangle_IncByte

• mangle_DecByte

• mangle_NegByte

• mangle_Bytes

• mangle_ASCIINum

• mangle_CloneByte

• mangle_AddSub

For the remaining mutation methods in 

Honggfuzz, after careful evaluation, I chose 

not to transplant.

I also integrate all the values of the byte’s 

replacement part of AFL, LibFuzzer and 

Honggfuzz, and construct a mutation value 

replacement table covering these three 

fuzzers.

Detection

The detection part can be simply abstracted 

into automatic start of the program, open 

the file, monitor process and catch the 

exception. There are many good solutions 

on Github, which are generally implemented 

by winappdbg or pydbg.

Vanapagan by Jaanus Kaap is a good 

example.

In order to improve the catch rate of heap 

memory access exceptions, I use Global 

Flags to enable Page Heap for Excel 

process.

Triage

During the fuzzing process, hundreds 

of crash files will be collected, how to 

effectively classify them is a science. 

Based on existing experience, I mainly pay 

attention to the following conditions:

1. Access violation: the exception 

code is 0xC0000005. 

Microsoft does not accept stack 

exhaustion vulnerabilities such 

0xC00000FD;

2. Non-null pointer reference 

exception: Microsoft does not 

accept null pointer reference 

vulnerabilities

Based on the above considerations, my 

classification rule is to distinguish a null 

pointer reference from a non-null pointer 

reference, distinguish access violation 

from other exception types. Under this rule, 

those non-null pointers with an exception 

code of 0xC0000005 are the crashes that 

I need to focus on.

My classification rule for Microsoft Office Excel exceptions for Non-null pointer reference 

is as follow:

• Read access violation

 » Out-of-bound read

 » Use-after-free read

• Write access violation

 » Out-of-bound write

 » Use-after-free write

In terms of real-time synchronization of the fuzz results across multiple virtual machines, 

I use a FTP server which serves in a virtual machine as the result server, and install the 

pyftpdlib module in server and clients. 

Reproducer

Not all crash files can be reproduced. So I write a reproducer based on my fuzzer. This 

reproducer is used to reproduce the crash results in various full patch Office environments 

and record the reproduced results. I make multiple Office environments to reproduce 

the crash files. Including but not limited to these:

• Office 2007  - no patch & full patch

• Office 2010  - no patch & full patch

• Office 2013  - no patch & full patch

• Office 2016  - no patch & full patch

• Office 2019  - no patch & full patch

For those reproduced by the reproducer, I will perform some manual check. If both pass, 

these files are regarded as valid vulnerability files.

Report

When a crash file is successfully reproduced, it can be automatically generated a 

professional report with the help of BugId. It should be noted that BugId can only run on 

Windows 10, so a “Windows 10+Office environment” with the latest Office and full patch 

version need to be made. 

Below is the BugId report I generate for one of my Excel vulnerabilities:

Once you have the BugId report, you can submit the vulnerability to MSRC:

• MSRC Researcher Portal

• The specific format of the vulnerability report can be referred to here

• The poc and BugId reports can be uploaded as attachments.

https://github.com/JaanusKaapPublic/Vanapagan
https://msrc.microsoft.com
https://www.microsoft.com/en-us/msrc/bounty-example-report-submission
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EQUIPMENT

I have a laptop for reproduction and report generation. These are all my fuzzing equipment.

My entire fuzz machine is only one computer with the following configuration:

• i7-8700 (12 Cores) 

• 16G DDR3 RAM

• 3.2GHz Primary Frequency

• 1T HDD

PROBLEMS

Throughout the process, I encountered at least the following problems:

• Dialog click 

• Virtual machine size

• Speed of execution

• Version switching

• Fuzz strategy

• Crash management

Dialog Click

The Excel software has various dialog boxes during the excuting process. Some dialog 

boxes such as “Safe Mode” can be resolved by cleaning the registry, while others need 

to be manually clicked. 

My way of solving these dialog boxes are as follows:

• Before each start of the file (or the end of the file), clean up the relevant registry 

item:

 » HKCU\Software\Microsoft\Office\Version\Excel\Resiliency

• Add a simple simulation click tool during the fuzzing, such as starting a separate 

thread for window enumeration and dialog click. A good example is cuckoo sandbox 

human plugin:

These methods can only handle most of the dialog box click problems, there are still 

some dialog boxes that I cannot solve, but there is no need to be perfect, it is enough to 

do these.

Virtual Machine Size

I use VMware to fuzz. During the fuzzing process, a large number of files are generated in 

each virtual machine, these files will gradually increase the size of each virtual machine. 

Over time, the disk overhead of the host will increase significantly(usually several to 

dozens of GBs per virtual machine).

In order to solve this problem, you must ensure that the current fuzzer has effectively 

cleaned up the files generated by the previous fuzz before starting the next file, mainly 

the following folders:

• %AppData%\Local\Temp

• %AppData%\Roaming\Microsoft\

Office\Recent

• %AppData%\Roaming\Microsoft\

Windows\Recent

Otherwise, once the number of fuzz 

executions increases, the size of the virtual 

machine will explode. As a result, the fuzzer 

will stop.

In addition to above operations, I also 

use Dism++ tool to regularly clean up the 

temp files inside each virtual machine, 

and configure the virtual machine to 

automatically clean up the disk after 

shutting down. 

In this way, the size of each virtual machine 

will be automatically reduced after 

shutdown, and the size of each virtual 

machine can be restored to the original 

size after a fixed interval (such as a few 

weeks), thus creating a basis for continuous 

fuzzing.

Speed of execution

When other conditions remain unchanged, 

the speed of fuzzing directly affects the 

output efficiency. 

After some testing and evaluation, I think 

the main factors affecting Excel fuzz are as 

follows:

• File size 

 » In the corpus distillation stage, I have 
selected as small a seed as possible 
while ensuring coverage. From a 
statistical point of view, for Excel, 
files smaller than 400KB are more 
likely to produce vulnerabilities.

• Office version 

 » There are many versions of Office. 
The higher the version, the slower 
the opening speed. From another 
perspective, the higher the version, 
the larger the amount of code and the 
number of potential vulnerabilities. 
I need to make some trade-offs.  
After a period of evaluation, I decide 
to focus on vulnerabilities which 
exists from Office 2007 to Office 
2019. 

 » After making this choice,  
I can speed up fuzzing by choosing 
to execute the file in a lower Office 
version. Although Office 2007 
/ Office 2010 have successively 
withdrawn from the support list, 
they are useful if the crash file which 
collected in these environments can 
affect the latest version of Office 
software. 

 » The main fuzz environment I finally 
chose is Office 2010. After many 
fine-tuning, my fuzzer can be 
stabilized on 10 virtual machines, 
and each virtual machine executes 
an average of 15w files per day, that 
is, runs about 15w files per day.

• The stability of fuzzer

 » If a fuzzer is unstable and crashes 
itself when executing, that is sad. 
Some fuzzers that use winappdbg 
may have this problem on x64 
environment, so I mainly run my 
fuzzer on x86 environment. After 
observing and improving for a 
long period of time, my fuzzer has 
achieved relatively good stability, it 
can run for weeks without problems.

https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py
https://github.com/Chuyu-Team/Dism-Multi-language/releases
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• Disk IO

 » This problem was discovered 
through observation. My fuzzing 
environment uses HDD. When using 
VMware to open multiple virtual 
machines (I open up to 11 virtual 
machines on a single computer), 
disk IO will become very stuck. 

 » Due to the limitation of disk IO, the 
fuzzing of inner virtual machines will 
cause VMware itself to hang on for a 
long time, which significantly affect 
the fuzz speed. Sometimes the 
fuzzing in a single virtual machine 
ends abnormally. 

 » It is necessary to clean up the 
environment in the virtual machine 
and restart the fuzzing, or restart the 
related virtual machine to resume 
the fuzzing. This process is a waste 
of time. I think SSD will improve a 
lot.

• CPU Cores, RAM and Primary 

Frequency

 » CPU Cores, RAM and Primary 
Frequency: The number of CPU 
cores and the RAM capacity directly 
determine the maximum number 
of virtual machines that can be 
opened at the same time. The bigger 
the two indicators, the better. The 
primary frequency directly affects 
the opening speed of the program. 
The bigger the primary frequency, 
the better.

Version Switching

During the fuzzing, it is necessary to 

consider the inconsistency of processing 

the same file by different architectures (x86 

and x64), different patches(no patch and 

full patch), and different language versions 

(Chinese and English). I mainly consider 

the following scenes:

• Files that cannot be triggered on x86 

can be triggered under x64;

• Files that cannot be triggered in a lower 

patch environment can be triggered in 

a higher patch environment;

• Files that cannot be triggered in the 

English environment can be triggered 

in the Chinese environment

Therefore, I test the above scenes with 

each set of seed files, and gain some extra 

crashes.

Fuzz Strategy

I think fuzz strategy is the most important 

part of my Excel fuzzing. What I have is a 

machine consisted of these:

• i7-8700 (12 Cores) 

• 16G DDR3 RAM

• 3.2GHz Primary Frequency

• 1T HDD

What I want are:

1. Obtain as much vulnerabilities as 

possible in the shortest time

2. Find vulnerabilities that exist in 

all versions of Office

This forces me to do many thoughts and 

explorations on how to configure fuzz 

strategies, my experience on fuzz strategies 

including but not limited to the following:

• Skip the first 512 bytes of the header of 

the OLE2 file during mutation to improve 

the effectiveness of the mutation;

• Use an older version of Office for 

fuzzing to improve the speed of 

fuzzing;

• Use smaller Excel files for fuzzing to 

increase the speed of fuzzing;

• Use Google to collect xls files which 

were made with old versions of Excel 

in the 1990s and 2000s, and add them 

to the initial seed collection;

• Select Office attack surface that 

may cause problems based on my 

experience (e.g. pivot table), then 

select related files for fuzzing;

• For a period of time, select the Excel 

files that is most likely to cause 

problems in the current results, and 

increase the proportion of them, 

because the file that causes a problem 

often causes other similar problems;

• For the same files, only use one 

mutation algorithm for fuzzing within 

a period of time, and continue to 

observe the effectiveness of the 

current mutation algorithm. If there are 

still more new outputs after a week, 

continue to fuzz, if there are almost no 

new outputs after a week, switch to 

another mutation algorithm;

• Categorize the size of seed files, such 

as 0-100KB, 101-400KB, 401-1024KB, 

>1MB, and test each seed set of a 

specific size in a specific period of 

time;

• The same files will be tested in full 

patch and no patch environments, in 

Chinese and English environments 

and in x86 and x64 environments

Crash Management

As more and more results are obtained 

from fuzzing, how to manage these crash 

files has become a very important thing. I 

mainly consider the following conditions:

• How to merge the same cases 

generated in different fuzz machines;

• How to exclude crash cases that 

have appeared before from the newly 

added crash files

Regarding how to merge the same cases 

generated in different fuzz machines, I have 

explained in the section “Methodology & 

Implementation - Triage” above. 

I use a FTP server to receive crash files 

across virtual machines, if a crash file has 

the same module and the same crash 

address with a previous file, the server will 

reject it.

Every once in a while, I will drag out all the 

crash files in the FTP server and reproduce 

them in a full patch environment with the 

help of my reproducer (I make several full 

patch environments, only one is frequently 

used). 

Only those newly appeared crash files need 

to be examined. Therefore, I use a python 

script to save all crash files processed by 

the reproducer to a local “database”(this 

database is just a simple folder list, but it is 

very effective). 

When the number of crash case in the 

database becomes more and more, the 

newly appeared crash files will be fewer and 

fewer, at the same time, the vulnerability 

rate of these new files will be higher and 

higher.
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RESULTS

After half a year of fuzzing (from 2020.05 to 2020.10), I reported a total of 20 Excel 

vulnerabilities to Microsoft. 

Two of them were marked as “Valid” but will not be fixed immediately, one was marked 

as “Won’t fix”, and the remaining 17 vulnerabilities are all fixed, and helped me receive 16 

CVE acknowledgements from Microsoft (one of them is duplicate). 

Note: “ALL” refers to Office2010, Office2013, Office2016, Office2019

Note: Case 61461 has been fixed in the January 2021 patch but it is duplicate, I have not tracked down 

its corresponding CVE number.

Below I share some cases found by my fuzzer.

• CVE-2020-1494 is an unallocated memory write issue in excel.exe.

• CVE-2020-17126 is an out of bound read issue in excel.exe.    

• CVE-2020-17127 is an use after free read issue in excel.exe, it is a nice UAF.

CVE-2020-1494 
(12a8.da0): Access violation - code c0000005 (first/second chance not available)
For analysis of this file, run !analyze -v
eax=02f842ec ebx=53348fc8 ecx=00004f00 edx=00004f00 esi=02f7f3ec edi=41004f00
eip=6a7b2dae esp=02f7f36c ebp=02f7f38c iopl=0         nv up ei pl nz na po cy
cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00210203
VCRUNTIME140!memmove+0x4e:
6a7b2dae f3a4            rep movs byte ptr es:[edi],byte ptr [esi]

0:000> dc edi
41004f00  ???????? ???????? ???????? ????????  ????????????????
41004f10  ???????? ???????? ???????? ????????  ????????????????
41004f20  ???????? ???????? ???????? ????????  ????????????????
41004f30  ???????? ???????? ???????? ????????  ????????????????
41004f40  ???????? ???????? ???????? ????????  ????????????????
41004f50  ???????? ???????? ???????? ????????  ????????????????
41004f60  ???????? ???????? ???????? ????????  ????????????????
41004f70  ???????? ???????? ???????? ????????  ????????????????

CVE-2020-17126 
(ddc.1678): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=5d1a10b8 ebx=00ce8354 ecx=000000b8 edx=00000150 esi=5d1a1000 edi=4e19cf48
eip=657f36fe esp=00ce6794 ebp=00ce67ac iopl=0         nv up ei pl nz na po cy
cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010203
VCRUNTIME140!memmove+0x4e:
657f36fe f3a4            rep movs byte ptr es:[edi],byte ptr [esi]

0:000> !heap -p -a edi
    address 4e19cf48 found in
    _DPH_HEAP_ROOT @ d01000
    in busy allocation (  DPH_HEAP_BLOCK:         UserAddr         UserSize -         VirtAddr         VirtSize)
                                5bba3b94:         4e19cea8              158 -         4e19c000             2000
    5873ab70 verifier!AVrfDebugPageHeapAllocate+0x00000240
    770090bb ntdll!RtlDebugAllocateHeap+0x00000039
    76f5349d ntdll!RtlpAllocateHeap+0x000000ed
    76f5214b ntdll!RtlpAllocateHeapInternal+0x000006db
    76f51a46 ntdll!RtlAllocateHeap+0x00000036
    5467cadf mso20win32client!Ordinal951+0x00000034
    ...cut...

0:000> !heap -p -a esi
    address 5d1a1000 found in
    _DPH_HEAP_ROOT @ d01000
    in busy allocation (  DPH_HEAP_BLOCK:         UserAddr         UserSize -         VirtAddr         VirtSize)
                                24d62270:         5d1a0f58               a8 -         5d1a0000             2000
    5873ab70 verifier!AVrfDebugPageHeapAllocate+0x00000240
    770090bb ntdll!RtlDebugAllocateHeap+0x00000039
    76f5349d ntdll!RtlpAllocateHeap+0x000000ed
    76f5214b ntdll!RtlpAllocateHeapInternal+0x000006db
    76f51a46 ntdll!RtlAllocateHeap+0x00000036
    5467cadf mso20win32client!Ordinal951+0x00000034
    ...cut...
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LIMITATIONS

For now, my fuzz method has the following shortcomings:

1. As mentioned earlier, in order to improve the speed and efficiency of fuzzing, 

I selectively ignored some potential vulnerabilities in terms of strategy (such 

as vulnerabilities only in the newer Office version). The fuzz method in this 

presentation is aimed at the vulnerabilities that affect all Office versions. Due 

to the limitations of my testing methodology, those vulnerabilities that only 

exist in the latest version of Office but not in the lower version of Office cannot 

be found through my fuzzing method;

2. If the current disk can be replaced with SSD, the file read/write speed will be 

significant increase, which can improve the fuzzing speed;

3. The mutation algorithm can still be improved. According to observations, after 

transplanting the Honggfuzz mutation algorithm to my custom fuzzer, the fuzz 

CVE-2020-17127 
(518.1010): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=049c6e94 ebx=0429cd90 ecx=04a20e28 edx=01700000 esi=049c6dc8 edi=11bea880
eip=2fadc12e esp=006f1fbc ebp=006f24ac iopl=0         nv up ei pl zr na pe nc
cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00210246
Excel!Ordinal40+0x19c12e:
2fadc12e 8b01            mov     eax,dword ptr [ecx]  ds:0023:04a20e28=????????

1:014> !heap -p -a ecx
    address 04a20e28 found in
    _DPH_HEAP_ROOT @ 1701000
    in free-ed allocation (  DPH_HEAP_BLOCK:         VirtAddr         VirtSize)
                                    4952d00:          4a20000             2000
    61e0adc2 verifier!AVrfDebugPageHeapFree+0x000000c2
    77d99913 ntdll!RtlDebugFreeHeap+0x0000003e
    77cdfb7e ntdll!RtlpFreeHeap+0x000000ce
    77cdfa46 ntdll!RtlpFreeHeapInternal+0x00000146
    77cdf49e ntdll!RtlFreeHeap+0x0000003e
79645cc3 mso!Ordinal149+0x000078ef
...cut...

1:014> u eip
Excel!Ordinal40+0x19c12e:
2fadc12e 8b01            mov     eax,dword ptr [ecx]
2fadc130 51              push    ecx
2fadc131 ff5008          call    dword ptr [eax+8]
2fadc134 c3              ret
2fadc135 a130039c30      mov     eax,dword ptr [Excel!DllGetLCID+0xd1ef7 (309c0330)]
2fadc13a 050c030000      add     eax,30Ch
2fadc13f 833800          cmp     dword ptr [eax],0
2fadc142 7468            je      Excel!Ordinal40+0x19c1ac (2fadc1ac)

output has increased significantly, which shows that an effective mutation 

algorithm can greatly improve the fuzz output. If I continue adding better 

mutation algorithms to the current fuzz framework, it can further improve the 

results;

4. The start and stop time of Excel process is too expensive. If there is a better 

way for simulating Excel execute process, it will significantly reduce the 

opening and closing time of the Excel process, and the fuzz speed can be 

greatly improved;

5. The corpus distillation method in this presentation uses static code coverage 

statistics. Compared with dynamic coverage statistics, this statistical method 

has lower coverage accuracy. Only a rough coverage assessment can be 

done, so there is room for improvement;

6. The initial seed set used by my fuzzer is limited. If all non-malware xls files on 

VirusTotal can be used for corpus distillation, the coverage result will be better 

and there will be more output
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ABSTRACT

Number of users who use Live-Streaming services are 

increasing currently. As a result, the volume of traffic 

required to provide services is increasing exponentially, 

which leads to economic and technical burdens. To 

solve this, many platforms providing Live-Streaming 

services are known to use grid computing to distribute 

traffic to clients. Grid computing technology uses P2P 

with unauthorized clients to send and receive data 

rather than communicating with trusted servers. This 

makes the process vulnerable at all time due to the 

difficulty in verifying data and the fact that it is processed 

locally. This paper analyzes widely used Live-Streaming 

services employing grid computing and suggests attack 

surfaces that can lead to vulnerabilities. Furthermore, 

we demonstrate its risk by explaining vulnerabilities we 

found (e.g., picture distortion, DoS, and data hijacking) on 

the exact attack surface. Finally, we suggest a security 

measure to these vulnerabilities.

CLIENT-SIDE ATTACK 
ON LIVE-STREAMING 
SERVICES USING GRID 
COMPUTING
Suhwan Myeong
Taiho Kim
TaiSic Yun 
Seungmin Yoon
Sunhong Hwang
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Table 1. Comparison Table of Live-streaming 

services using grid computing

Unencrypted Packets

Most platforms do not encrypt packets (See 

Table. 1). This cause security vulnerabilities 

because attacker can arbitrarily tamper with 

video data or data protocol headers and 

transmit them to the receivers. In addition, 

Unauthorized client can steal private video 

data.

Receiver’s data processing issue

Grid-Executable of these services is used in 

the process of sending and receiving video 

data. Thus, if an attacker sends video data, 

vulnerabilities such as memory corruption 

inside the Grid-Executable can lead to 

arbitrary code execution attacks.

Structure of Grid Computing

In Live-Streaming service, grid computing 

technology is implemented in tree structure 

or mesh structure.

Tree-based Structure

Grid computing technology of tree-based 

structure is a method in which the user 

receives video data from the parent node 

and then forwards it to the child node. Data 

is unilaterally transferred from the parent 

node to the child node. (See Fig. 1)

At this time, if a malicious user on the 

position of the parent node transfers 

mutated data, all of the child node of that 

receives mutated data. Moreover, it is easy 

to modulate data and control flow because 

it receives data from one user, which can 

be efficiently acted on attacks.

Mesh-based Structure

Grid computing technology of mesh- based 

structure is a method in which video data is 

sent and received between different clients 

connected to the same group. It is distinct 

from tree-based structure with hierarchies 

that unilaterally transmit data from one 

side. (See Fig. 2)

Therefore, mesh-based structure can 

reduce the risk derived from tree-based 

structure.

However, there is still a possibility of attacks 

on clients within the same group through 

data modulation.

 

Fig 2. Mesh-based Grid Computing Structure

INTRODUCTION

Recently, due to the social distancing 

caused by covid-19, groups such as 

academies and companies are using a lot 

of Live-Streaming services for non-face 

-to-face events, classes, and meetings. 

As a result, traffic for streaming services 

is increasing rapidly, and because ISPs 

(Internet Service Providers) have to pay 

network usage costs in proportion to the 

amount of network usage under Korean 

law, streaming platform providers pay a lot 

of money due to the increasing amount of 

traffic. For this reason, most of streaming 

platforms in Korea provide services using 

grid computing technology to relieve 

the economic burden. Grid computing 

technology, which is a method of sharing 

internal resources between users, 

exchanges data between general users, so 

if security management is not thoroughly 

carried out, there is a possibility of being 

vulnerable in security. Also, since it can 

attack multiple PCs at once, its security is 

important. However, there is no research 

pointing out the security of the system 

using the grid computing so far. Therefore, 

in this paper, we will deal with the security 

risks of grid-based streaming services 

among Live-Streaming services.

BACKGROUND

Live-Streaming Service

Live-Streaming service is generally 

called video sharing platform, and in the 

early days of their appearance, anyone 

who want to use streaming service can 

transmitted private contents through video 

sharing platform, but these days, public 

broadcasting, politicians, entertainers, etc. 

are also using those platforms a lot.

Grid Computing

Grid Computing is a type of distributed 

and parallel computing, a technology 

that allows multiple users’ computers 

connect to a network to be used like 

a single supercomputer. Using this 

technology, some Live-Streaming services 

in South Korea use distributed computing 

technology that utilizes each client’s PC as 

a server resource.

Grid-Executable

Grid Computing requires an executable file 

that sends, receives, and processes data 

with other clients or servers in addition to 

browser to watch broadcasts. In this paper, 

Grid-Executable is an executable file for 

Live-Streaming service.

Grid Computing and Live-Streaming 

Service

Live-Streaming services select data 

transmitters and transmit video data. 

Selected transmitters send video data to 

another client. The service is provided by 

sending and receiving video data from 

the Grid-Executable and passing it to the 

browser and application to send the video. 

This way of Grid Computing communication 

is used on Live-Streaming service in South 

Korea and some corporations of China.

THE RISKS OF GRID COMPUTING

Its communication speed is important 

because the Live-Streaming Service 

broadcasts in real time for ensuring this 

speed, it omits the authentication or 

encryption of complex processes and 

focuses only on optimal data processing 

functions. This paper aims to present attack 

surfaces in those services.

Fig 1. Tree-based Grid Computing Structure
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ATTACK SURFACE

As a result of the initial analysis, all three Live-Streaming services each have three binary 

files include Grid-Executable on the client side. These files are as shown in Fig. 3 and 

operate like following structure. Manager.exe is in charge of starting and managing the 

overall process. When clients start watching a Live-Streaming, Manager.exe executes 

Updater.exe. Then, it checks the version of other binary files and then performs an update 

process if necessary (if newest version is). After that, Updater.exe executes the Streamer.

exe so that it is ready to send/receive video data. 

The detailed operation of Streamer.exe is shown in Fig. 3. 

First, the client transmits CPU speed, RAM availability, and network traffic to the main 

server, and the main server transmits the IP and port number of another client to connect. 

The client transmits and receives video data through socket communication through the 

corresponding IP and port number. Although grid computing protocols are different for 

each of the three companies, it generally proceeds in three steps as follows:

1. Prove that the client is an authorized user by sending initial data. 

2. Send a short request packet. 

3. Transmit the corresponding video data. In the above structure, as shown in 

Fig. 4, five attack surfaces (Main Server, Update Server, Init data, Request data, 

Video data) were selected to diagnose the vulnerability.

Fig 3. Process Flow

 

VULNERABILITY CONSEQUENCES

The result of vulnerability diagnose is shown in Table 2. In this section, we explain the 

details of these vulnerabilities. 

Table 2. Summary of vulnerabilities in Live- Streaming services

(O: discovered, X : Un- discovered, - : Not Applicable)

Fig 4. Attack Surfaces
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Network communication with the main 

server

Private IP Exposure

This vulnerability is information leak on 

Company C. Main server sends client’s 

public IP and private IP. Private IP is not 

necessary for client connection. And it 

is possible to identify people who are 

watching the same broadcast through 

public and private IP, so it can be private 

information leak. In fact, we could get a 

total of 70 IP information in 2 hours from a 

broadcast with about 2000 viewers.

Network communication with the update 

server

Remote code execution as root via 

update file tampering

In the case of Company A, there are no 

verification routine before file execution as 

seen, so we can tamper the update file by 

DNS spoofing and remote code execution 

at root privilege.

Prevented by Digital Signature Check

In Company C, we can tamper the update 

file to older version of it, because previous 

version file is also using valid file signature. 

If there are some vulnerabilities in older 

version file, this vulnerability will be useful.

Network communication with the Client: 

Initial data

Video Stealing with Initial Data

In the case of Company A, the initial data is 

sent after P2P connection at usual case and 

the video data is received. In this process, 

we noted that there is no authentication 

process that can specify users other than 

the initial data. We found vulnerability that 

allow an attacker who is not participating 

in that channel to send initial data to the 

client in that channel, forcing the data to 

be hijacked. 

This is meaningful in that unauthorized data 

such as private broadcasts, broadcasts 

for adults, and paid lecture broadcasts 

that are not disclosed to people can also 

be captured. It can also lead to personal 

information leakage in that it can collect 

certain people’s Watch History.

Heap Based Buffer Overflow due to 

Data Length Modulation of Initial Data

In the Company B, we could find Heap 

Overflow due to data length modulation. 

The response data for the initial data 

included the data length value. If the 

attacker receives the initial data from the 

victim and modulates the length value 

when responding, there is no routine for 

checking the length value, so it is entered 

as an argument of the memmov() function, 

and the Heap Buffer Overflow occurs.

Video Stealing with Initial Data

There is a same vulnerability on Company 

A. In the case of Company B, data needs to 

be sent three times to be authenticated and 

data stolen. It initially transmits the channel 

ID given to the broadcast channel. It then 

receives the first sequence and the last 

sequence from the receiving client. If we 

send the sequence in between, we could 

receive the video data from that sequence.

Denial of Service

In the case of Company C, the ticket 

information is transmitted to check the 

client is normal user for service at the 

beginning of the connection. At this time, 

when the length header of the ticket is 

tampered, it is larger than the length defined in the ticket-related structure and proceeds 

to a different branch statement. Afterwards, that process was terminated with an error 

message, which allowed a Denial of Service attack.

Network Communication with the Client: Request Data

Denial of Service

In Company C, when client receives request packet, Streamer.exe parses the packet. 

First of all, it parses the 1-byte data which is the number of requests. Usually, the value 

of this field is one. Then it parses these 4-byte data which is video sequence number. 

However, if we alter the Request number field, it overreads the packet and the process 

terminate with the error message.

Network Communication with the Client: Video Data

Heap Based Buffer Overflow

In Company A, as a result of protocol analysis, there is a 16-byte header containing the 

data length in all video data. At this time, if the length value is altered and transmitted to 

clients, there is no routine for checking the length value, and a heap overflow occurs in 

the memcpy() function. This vulnerability occurs in both Mac, Windows, and iOS.

Pirate Broadcasting by modulation of video data

In Company A, there was a vulnerability that could remotely change video of other clients. 

It is caused by weak data integrity verification.

In usual case, client who want to watch Broadcast_A can watch it because other client 

who is in higher hierarchy sends it (See Fig. 5).

Fig 5. Usual case watching broadcast
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By hooking the send() and recv() function with Frida, the attacker could drop all the 

original video data and send the desired video data to change the video and sound of 

other clients. Since the attacker can relay Broadcast_B, attacker can force the victim to 

watch any video attacker wants (See Fig. 6).

 

Denial of Service

Grid-Executable of Company B processes the video data received from other clients 

and sends it to the browser. When the dummy data with video data is sent, the receiving 

client sends it to the browser after processing the data. In this case, the video is stopped 

because there is a problem with the process of sending data to the browser.

Picture Distortion (1)

In Company B, attacker can distort the victim’s screen. Thus, we could know that does 

not verify the integrity of the video data. Company B is using tree-based structure of grid 

computing. So, we think it can be expanded to Pirate Broadcasting like Company A.

Memory corruption via Sequence Number field modulation

In Company B, based on analyzing data protocol and binary file, the sequence number is 

assigned to the first 8 bytes except header 0x20 bytes in the data required for watching 

video. When the sequence number is processed, the value of signed long long type is 

used as an index through the % operation. 

Some parts of the data can be tampered with by an attacker. Values used like indexes 

can be negative. This allows the process to gain access to unauthorized memory. An 

attacker could exploit this vulnerability to remotely terminate the victim’s process. 

Fig 6. Pirate Broadcasting

This vulnerability is significant in that it is not difficult to carry out attacks and is capable 

of continuous performance.

Picture Distortion (2)

In Company C, attacker can distort the victim’s screen. The screen can be tampered when 

the video data is sent after hooking at the WSASend() function using Frida. So, we could 

know that does not verify the integrity of the video data. But Company C only sends data 

about the requested data in mesh-based structure, so it will be hard to expand to Pirate 

Broadcasting.

CONCLUSION

In this paper, we studied the risk of Live-Streaming services using grid computing 

technology.

As a result, it presents three risks. 

1. Data tampering is possible because packets exchanged between users are 

not encrypted. 

2. The data received from the user is used as the input value of the Grid Executable 

without verification. 

3. In the case of a service that uses a tree-based grid computing method, it is 

possible to simultaneously attack multiple users because the infection of one 

user affects all of the users below it.  

Based on these three risks, this study derives five attack surfaces. In addition, through 

vulnerability verification, various vulnerabilities were derived, including personal 

information leakage such as private IP exposure, and critical 0-day vulnerability such as 

RCE through file alteration. This risk suggests that it can act like a network worm rather 

than attacking only one user. 

Therefore, when using grid computing such as Live-Streaming service, we present two 

security measures. 

1. In the process of establishing a connection between users, a step of verifying 

whether the user is authenticated by the server should be added. 

2. The checksum value of the received video data should be checked through a 

request to the server. □
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How do red teams 
attack Kubernetes in 

the real world?

Zebin Zhou & Yue Xu

RISE OF THE 
CLOUD NATIVE 
CONTAINERS

With the rise of cloud computing 

and cloud-native technologies, 

when companies choose cloud 

products from cloud computing 

platforms, they will also tend to 

build cloud-native applications 

on top of the cloud-native 

infrastructure. Fewer developers 

are using VMs and VPSs directly 

and choose the cloud products 

and cloud services with 

Kubernetes, Docker, Container, 

and Serverless instead; at 

the same time, the number 

of attacks against containers, 

Docker, Kubernetes is also 

showing an upward trend. One 

of the most obvious is that 

more and more botnets are 

also eyeing the battlefield of 

container 

and cloud-native. We have 

made a statistic, the purchase of 

cloud-native products by users 

has clearly shown an upward 

trend. Graboid, Cetus, H2Miner, 

Ngrok, Doki, 8220 Mining 

Group, T3llyz, BORG, and other 

genealogical botnets are also 

quickly focusing on cloud-native 

applications, including but not 

limited to deploying backdoors 

in Dockerhub’s images, attacking 

Docker Daemon Remote API, 

Kubernetes APIServer insecure 

API, Kubernetes Kubelet insecure 

API, etc. More than above, the 

BORG will even be carried out 

lateral movement and persistent 

backdoor in Kubernetes. The 

security risks of Kubernetes 

applications are becoming more 

and more serious.
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PRACTICAL ATTACK TECHNIQUES

Everything starts with the shell of a container. You can get the shell of the container of 

the PHP application through a vulnerability similar to PHPUnit Remote Code Execution 

(CVE-2017-9841). 

In the default Kubernetes container network, you can access more things: ports of other 

POD containers, and ports of Kubernetes Services, ports of the current node and other 

slave nodes, the services of the Master node, and the component services of Kubernetes. 

In the past, our goals were often the Agent Master server, SSH password database or 

IT automation master control server, and so on, including but not limited to SaltStack 

Master, Ansible Master, etc. But in the Kubernetes network, this kind of centralized power 

is unified into ApiServer. Obtains the Admin permission of the Apiserver or the ROOT 

permission of the Master node will announce the end of the war. 

After entering the private Kubernetes network, the red team needs to figure out where 

they are, for example:

1. Which cluster is the current container in?

2. Which Namespace is the current container in?

3. Which node is the current container in?

The first two questions, if you understand the service DNS design in the Kubernetes 

container network, will certainly not be difficult for you. Here are two simple examples of 

Kubernetes Service DNS records.

What are the actual actions of DNS requests in a Kubernetes container? If you use 

nslookup (in busybox image) to request a service name that does not exist in the current 

Kubernetes namespace (assuming the default namespace: default). 

For example, service_inexistence. nslookup will request in turn as below: 

• service_inexistence.cluster.local

• service_inexistence.svc.cluster.local

• service_inexistence.svc.cluster.local

• service_inexistence.default .svc.
cluster.local

• service_inexistence.cluster.local

• service_inexistence.default .svc.

cluster.local

NEW CHALLENGE FOR RED TEAM

While the infrastructure used by enterprises 

is going to change, the red team’s attack 

skills and thinking must also be innovated. 

Red teams generally divide the start-point 

of persistence into two categories: 

1. the persistence in the production 

network 

2.  the persistence in the office 

network

For traditional IDC, in general, the base of 

the production network is to get a shell of 

a server host, and then we will collect the 

information on the host server, and use 

host alive detection, port scanning, service 

collection, and other methods to get more 

shell to achieve the purpose of controlling 

all servers or important and core servers. 

And now, when enterprises build 

applications on the cloud-native 

Kubernetes, if the red team obtains the 

shell of the production network through 

application vulnerabilities, it is often not the 

same as an IDC server, you will get a shell in 

a container with a single environment and 

limited local resources and information. 

At this time, if the red team does not 

understand the security design and 

implementation of cloud-native technology 

and container technology, it will be hard to 

go to next. 

On the other hand, the method of getting 

an office network PC’s control is similar 

to the traditional ATT&CK method, but the 

red team’s lateral movement from PC to 

production network will be very different. 

In IDC, staff originally depended on PAM, 

Jump Servers, and other devices that use 

SSH capabilities to log in and manage the 

server. but now, different applications are 

running in different containers and use 

Kubernetes for deployment, scaling, and 

management. 

The administrators, developers, and 

operation and maintenance personnel of 

production network applications do not 

have server host permissions, but only 

container permissions of their application. 

Enterprises use multi-tenant container 

clusters to assign employees’ permissions 

to the cluster under the namespace of their 

own application and provide kubeconfig 

corresponding to the application, 

namespace, and profile to the application 

administrator; configure PodSecurityPolicy 

to prevent the application administrator 

break out the rules. 

The administrator no longer uses ssh 

for the operation, but through kubectl or 

secondary development tools (usually, it 

may be a dashboard with a web console). 

Therefore, the target of the red team on 

the PC will be changed to the configuration 

file in the ~/.kube/ directory, instead of the 

ssh login credentials and the credentials of 

the jumper server; of course, with the rise 

of DevOps technology, it will attack the 

internal DevOps platform of the enterprise. 

It is also a new type of attack technique 

under sudden change.
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The reason is that Kubernetes will be mounted into the container with writing search 

default.svc.cluster.local svc.cluster.local cluster.local in /etc/resolv.conf file to ensure that 

the domain DNS resolution of the container can be addressed normally. Because of this, 

you can get the namespace name and cluster domain easily. Then how does the red 

team get the IP of the current node where the container is located? 

This information is very important. On this point, you can check the container’s arp table 

by cat /proc/net/arp. If you are lucky, you can easily get the IP and Mac address of the 

NODE. Container escape is that the red team will inevitably try after getting a container’s 

shell. To better understand the method of container escape, you should know that the 

process in the container is essentially just a restricted ordinary Linux process. All the 

behaviours of the process inside the container are transparent to the host. 

Therefore, the nature of container escape is very different from hardware virtualization VM 

escape (excluding Kata Containers, etc.). In my understanding, the process of container 

escape is that a restricted process obtains unrestricted full permissions, or getting more 

privileges for a process originally restricted by Cgroup/Namespace permissions, it is 

closer to the privilege escalation in the Linux host.

The common escape techniques are as follows:

1. Docker Components Vulnerability

• Docker runc (CVE-2019-5736)

• Docker cp (CVE-2019-13139)

2. Linux Kernel Vulnerability

• DirtyCow (CVE-2016-5159)

3. Mounted File

• /docker.sock (docker daemon)

• /containerd.sock (containerd daemon)

• /proc, /etc, /root ...

• /var/run/secrets/kubernetes.io/serviceaccount/token

4. Shared Linux Namespace & Capabilities

• Privileged Containers

• Exploit shim(CVE-2020-15257) with net=host 

• Process Injection with CAP_SYS_PTRACE AND HOSTPID

• Rewrite Cgroup with CAP_SYS_ADMIN

If the target is set to obtain read and write permissions for files on the host (everything 

is a file on Linux), the idea of escape will be more flexible. There is an escape method 

for Privileged containers and containers with CAP_SYS_ADMIN Capabilities, which is 

similar to the method of executing commands on the host using cgroup release_agent, 

but most EDRs can not detect. 

The principle is that the red team creates a new cgroup of device subsystem in the 

current container and rewrites the “devices.allow” file of cgroup in the current container 

to “a”.  At this time, we have access to the host’s block devices and can read and write 

any file of the host. (Now, you can refer to https://github.com/cdk-team/CDK/blob/main/

pkg/exploit/rewrite_cgroup_devices.go for more information on this method.)
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But not all containers allow us to escape. 

Focusing on the default design of 

Kubernetes can also help the red teams 

achieve more results in the Kubernetes, 

especially the network. The following 

image shows that in the default design 

of Kubernetes, you can access things 

differently from the traditional IDC private 

networks after you get a shell.

The IP of POD and Service are allocated 

based on the podSubnet and serviceSubnet 

settings of the Kubernetes administrator. 

We can scan the ports of containers based 

on this information. 

In terms of detection, although in the 

traditional IDC intranet confrontation, a 

large-scale port scan will easily trigger the 

detection logic of EDR. Some EDRs do not 

adapt to the tunnel or CNI plugins that come 

with the container network, which makes 

EDR unable to detect scanning behaviours 

between containers to containers, and 

containers to nodes. 

For the red team, it is necessary to determine 

whether the current container network is 

using service meth. Because if istio is used 

in the Kubernetes network, if you initiate 

port scanning and detection from inside 

the container, the scan results of all ports 

will return open for masscan, and for the 

commonly used Nmap scanning options 

under normal circumstances, they will all 

return “filtered”. So how to detect whether 

the target cluster is using istio? 

The easiest and most effective method 

is that you can initiate a request to an 

HTTP 80 service on the public network in 

the container. For example, execute the 

command as `curl -i http://httpbin.org/get`, 

and istio will inject header contains envoy 

and istio into this request. The header can 

be easily seen. 

About scanning, whether your container 

shell is in istio or not, it is a good choice 

to use the Nmap parameter like `-p 17 -iL 

all_ip_in_Kubernetes.txt -sO -Pn` on the 

intranet to perform ICMP scanning to 

determine whether the container and the 

host are alive. Of course, the premise is 

You have to first think about whether the 

use of tools and scanning behaviour will be 

discovered by EDR.

In the port scan results, the following ports are often focused on by the red team: once 

the kube-apiserver is not authenticated or the admin’s kubeconfig is obtained, it will be 

a risk of harming the entire cluster. 

Even if the obtained kubeconfig is not an admin, it is worthy of the red team’s attention. The 

kubectl proxy subcommand and kubelet’s 10255 read-only-port are security issues that 

are easily overlooked by cluster administrators under the default design of Kubernetes.

1. kube-apiserver: 6443, 8080

2. kubectl proxy: 8080, 8081

3. kubelet: 10250, 10255

4. dashboard: 30000

5. docker api: 2375

6. etcd: 2379, 2380

7. kubeflow-dashboard: 8080

In addition to the components used by Kubernetes by default as above, the open-source 

components commonly used in container applications should also attract our attention. 

For example: “API Gateway”. The most commonly used Cloud-Native API Gateway: Kong. 

The version of the open-source branch does not include authentication capabilities. In 

general, administrators will use a private network to ensure the security of the Kong 

Admin API, so we can easily control it after entering the intranet. APISIXs with the second 

market share, it’s Admin API is also open to the public world. 

Although there is an access key-based authentication capability, it has a default access 

key that is often not modified; with this access key, it can even be used directly. Run the 

Lua script to get the shell of the API Gateway service container. The API gateway manages 

the north-south traffic of the cloud-native cluster, which is very helpful in understanding 

the role of the cluster.

REAL-WORLD RED TEAM ATTACK CASE

Okay, then we will share a real-world CASE in 2020, which involves a lot of cloud-native 

and container-related knowledge. This time our goal is a company engaged in the 

financial industry. All of their online applications and office applications are running on 

Kubernetes. They hope to assess their overall security risk convergence results from the 

public network to the private network. It is not aimed at employees, not using phishing, 

but using vulnerabilities to obtain their cluster permissions without any interaction with 

employees. 

We found that they built a self-developed zero-trust system based on the concept of zero-

trust, so that employees can work normally at home and on their mobile phones. This is 

our first breakthrough. After investigation, we found that all the intranet domains of the 

target company are in the subdomain of innerxxxx.com, and some private domains can 

also be parsed normally on the external network. They are all a cname record, pointing 

to a gateway (ztgateway.innerxxx.com) in the public network. 
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Just like below:

;; ANSWER SECTION:
git.innerxxx.com.   600 IN  CNAME   ztgateway.innerxxx.com.
dev.innerxxx.com.   600 IN  CNAME   ztgateway.innerxxx.com.
hr.innerxxx.com.    600 IN  CNAME   ztgateway.innerxxx.com.
www.innerxxx.com.   600 IN  CNAME   ztgateway.innerxxx.com.
bot.innerxxx.com.   600 IN  CNAME   ztgateway.innerxxx.com.

But if the red team directly accesses the intranet office domain name from the public 

network, it will return 403, as shown below:

If an HTTP request from a target company 

employee wants to access the OA website 

normally, two things are required; one is 

the client accessing the intranet, and the 

other is the session token indicating the 

employee’s identity in the request. 

Regarding employee identity, we obtained 

the AD Credential of some employees 

through brute force cracking of Microsoft-

Server-ActiveSync exposed on the public 

network but we were unable to obtain the 

employee’s client program for a long time. 

However, when we learned that the 

client program played a similar part as a 

VPN, we began to analyze the possible 

security issues in this design. Imagine 

that, ztgateway.innerxxx.co is open on 

the public network. What is its method of 

restricting the source of HTTP requests? 

Will this type of restriction be converted 

from inaccessibility at the network layer 

to code implementation at the application 

layer? 

So, I tried to fuzz the HTTP request we sent 

to ztgateway.innerxxx.co, and set CLIENT-

IP, X-FORWARDED-FOR, X-FORWARDED, 

FORWARDED-FOR, FORWARDED, 

REMOTE-ADDR, and other header values 

to different private IP addresses. In the 

end, I found that when the HTTP request 

sent to the Zero Trust Gateway carries the 

X-FORWARDED-FOR HTTP header and 

the value is a private network IP starting 

with 10. We then can access the OA login 

page. Coupled with the employee identity 

we got in Microsoft-Server-ActiveSync, we 

successfully have access to the enterprise 

automated office network.

The office network is a new world. After a 

long period of exploration, we finally found 

a new breakthrough in the serverless web 

service (serverless.innerxxx.co). When 

a new git project is provided to link to 

serverless web services, serverless will 

have a public container to download the 

project code, install dependencies, and 

repackage it. This is a very imaginative 

feature for the red team. We found that 

there are several ways to get the shell of 

this container.

1. Command injection attack when git clone downloads code.

 

2. When installing node.js dependent packages, construct a special package.

json to control the public container using methods such as preinstall.

 

3. Configure the pip requirements.txt pointing to the malicious third-party 

package, and use the malicious pip package to get a shell of the dependent 

packaging container. 

In addition, there are commands executed like git clone, git submodule update, go get 

are executed by using programs such as git client and go client of low versions, such as 

CVE-2018-6574, CVE-2019-19604, and so on.  All in all, we got the root shell of this public 

container and found that this container contains CAP_SYS_ADMIN capabilities. There 

are two escape methods suitable for this type of container. 

Now you can use our open-source tool CDK (https://github.com/cdk-team/CDK/) to easily 

detect and escape such containers. Use cdk evaluate to detect capabilities and use cdk 

run rewrite-cgroup- devices or cdk run mount-cgroup “<shell-cmd>” subcommand for 

escape the container. 

Now we have the node shell for the public container, great! We know that all agents 

that act on and serve containers should run on the host or sidecar container, 
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“DaemonSet” containers with privileged; we did find a lot of self-developed agents on 

this host. So, we found one interesting agent named cri_webconsole_agent, and got 

his binary program, startup parameters and configuration files. The program is written 

in golang, and we know that this agent program is to support web console capabilities.  

 

How do corporate employees manage their containers? It is through this web console 

that you can call bash in the container to execute commands in the web console. The 

agent will listen to port 3333. The following HTTP request can create a session of the 

docker exec subcommand. In the end, the agent actually calls the local unix:///var/run/

docker.sock exec function.

But how should we get all the container IDs with 64 lengths on each server? This is 

obviously impossible. But the man who has used the Docker container knows that we 

can replace the entire container ID with 64 lengths by using the first few digits of the 

container ID. In unix:///var/run/docker.sock, it is also supported. If there are only two 

containers running on the host like below:

1. cd2cb750d3fadf31c18e04f09d168f89b53bbe39bc4488cda90f3632448e3cb8 

status: Up 4 months

2. cdd085be4297dc2e89958af4be5427e853b008a10797eaab15197f944a2babb1  

status: Exited (0) 2 days ago

The behavior of unix:///var/run/docker.sock will like below:

1. Request /v1.24/containers/cd/exec and return “container id multiple”;

2. Request /v1.24/containers/ca/exec  and return “container id not found”;

3. Request /v1.24/containers/cdd/exec  and return “container not starting”.

Therefore, we can use the Docker short-id feature to fuzz all container short-id on all 

hosts. We can get the shells of all containers on all node servers, so, we focus on another 

agent. It is an agent that collects logs. It runs on all Kubernetes node servers and uses 

DaemonSet to deploy. It uses a Kubernetes DaemonSet YAML file similar to the following 

image.

This is almost the default setting in filebeat-daemonset.yaml. Many escape tricks that may 

work here. It is both privileged and mounts the root directory to the container. Obviously, 

we only need to use the above cri_webconsole_agent 3333 port to control the container 

started by this DaemonSet to obtain the ROOT permission of any node server, and this 

DaemonSet ensures that all Kubernetes Nodes run a copy of a Pod, all nodes of this 

cluster are in our grasp.

Obviously, if there is a tool that can help red teams do the above work, then our penetration 

testing will progress more smoothly; this is also the reason why we developed CDK 

(https://github.com/cdk-team/CDK); CDK-Zero Dependency Container Penetration 

Toolkit, it is a CLI tool which allows you to:

1. Evaluate weakness in containers or Kubernetes pods.

2. Exploit multiple container vulnerabilities.

3. Perform common container post-exploitation actions.

4. Provide capability when host-based tools are not available in the container.

5. Perform the above in a manual or automated approach.

Hope the skills, experience, and tools we share can help you. □
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Bramwell Brizendine,  Austin Babcock, and Andrew Kramer

TOWARDS A 
PRACTICAL 
APPROACH 
TO JUMP-
ORIENTED 
PROGRAMMING

Move over, ROP:

ABSTRACT
Jump-oriented Programming (JOP) is an advanced, little 

studied form of code-reuse attacks, very different from 

Return-oriented Programming (ROP). Little work has 

been done with JOP apropos of practical, real-world 

usage. In this paper, we introduce a methodology of 

advanced manual techniques for performing JOP in a 

modern Windows environment, including novel, manual 

techniques to allow JOP to be more effective in real-

world usage. This research culminates in JOP moving 

from the theoretical, to being more useful and relevant. 

This work provides a refinement and expansion of 

viable dispatcher gadgets, including a novel two-gadget 

dispatcher form, helping provide much needed flexibility 

to control flow mechanisms for JOP. We also provide a 

novel contribution with the JOP ROCKET, which allows 

for the automatic JOP chain construction, to produce 

complete JOP chains to bypass DEP, utilizing an novel 

variation on JOP, involving a series of stack pivots. 

Keywords: Jump-oriented Programming, Return-oriented Programming, Code-

reuse Attacks, Software Exploitation, Reverse Engineering, Cyber Operations
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INTRODUCTION

Return-oriented  Programming (ROP) has 

been the predominant code-reuse attack, 

since its formal introduction to the academic 

literature in 2007 [1].  In fact, ROP has 

become so omnipresent and ubiquitous, 

that one might mistakenly think it is the only 

code-reuse attack available. As we look 

at exploits, we can find hundreds of ROP 

examples at Exploit Database, yet there 

are just a few [2–4] publicly available in the 

wild that intermix a substantial amount of 

JOP, and none that include complete JOP 

chains. 

We can categorize Jump-oriented 

Programming as a state-of-the-art form of 

code-reuse attacks, able to completely 

abandon the usage of ret instructions, while 

avoiding the use of the stack for control 

flow purposes, although we do use it to 

set up WinAPI functions. JOP is a seismic 

shift to a very different style of code-reuse 

attacks from ROP. While some varieties of 

JOP can be intermixed with ROP, JOP also 

stand on its own, fully separate from ROP. 

There were even claims as recent as 2015 

that JOP had never been done in the wild 

[5], and since then it has only ever been 

rarely done. In fact, there was no public 

demonstration of a complete JOP chain 

until our presentation at DEF CON 27 in 

Las Vegas 2019, where we used only JOP 

to bypass DEP. Since then, outside of JOP 

exploits being written in an Advanced 

Software Exploitation course taught by one 

of the authors, we are not aware of other 

complete JOP chains. 

This research hopes to change that, as 

we have made a number of significant 

contributions since the release of the JOP 

ROCKET [6–8] in 2019.

While JOP has been written about in 

the academic literature for over a little 

over a decade, it has languished, mostly 

forgotten, with only some varieties of JOP 

used to intermix with ROP.  This is hardly 

surprising, given the previous absence of 

tools to facilitate JOP gadget discovery 

and use, and the nearly complete lack 

of documentation on practical details of 

performing JOP.

The need for dedicated JOP tools led to the 

JOP ROCKET , aa mature tool for discovery 

and classification of JOP gadgets, allowing 

users to find gadgets and construct a JOP 

chain from scratch, assuming sufficient 

gadgets. JOP ROCKET is also the first 

utility to find dispatcher gadgets, which are 

required to do an exploit entirely without 

the use of ROP. With dispatcher gadgets 

and JOP gadgets, we can entirely avoid 

not only all ret instructions, but also the use 

of the stack for control flow purposes. 

In late 2020, we added support for 

automatic JOP chain construction, to 

create a complete JOP chain to bypass 

DEP using VirtualProtect or VirtualAlloc. 

The automated JOP chain involves a novel 

JOP technique requiring fewer gadgets, 

offering simpler usage.  In April 2021, we 

also extended the JOP ROCKET, introducing 

a two-gadget dispatcher, allowing for a 

single gadget that was relatively obscure 

to be found more easily, and thus make 

ability to use a complete JOP chain more 

likely.

This paper’s organization will be as follows. 

First, we will introduce JOP, providing a 

background on this form of code-reuse 

attacks, exploring the academic literature. 

Next, we will introduce JOP ROCKET, 

discussing the tool, its contributions, 

and its general usage. Then we will 

discuss ROCKET’s automatic JOP chain 

construction and the novel approach 

behind it. We will then present our novel 

dispatcher gadgets, including a two-

gadget dispatcher. Previously, JOP using 

the dispatcher paradigm was limited, owing 

to scarcity of dispatcher gadgets. This 

variation is significant because it allows 

for vastly more possibilities. This novel 

two-gadget dispatcher coupled with our 

stack pivot variation on JOP should enable 

JOP to be more feasible on many more 

applications. Finally, we will take a deep 

dive into manual techniques for JOP. Many 

details on JOP usage in a modern Windows 

environment had never before been 

documented; some of these techniques we 

have had to develop through trial and error 

and experimentation, taking a theoretical 

approach and making it pragmatic, 

providing solutions to make JOP viable.

JUMP ORIENTED PROGRAMMING FUNDAMENTALS

JOP is a state-of-the-art form of code-reuse 

attacks. Categorizing JOP may be useful 

as a human construct, but we emphasize 

these distinctions are arbitrary, as there 

can be intermixing of the different styles. 

The first method is the Bring Your Own 

Pop Jump (BYOPJ) [9], where a register can 

be loaded with an address, which is then 

executed. T

he next method utilizes the dispatcher 

gadget, allowing the attacker to craft 

a dispatch table in memory and user a 

dispatcher to execute individual functional 

gadgets [10]. The third approach to JOP 

[2–4] is a real-world variation on BYOP, 

combining functional and dispatcher 

gadgets as a more labyrinthine chain, 

allowing for a greater variety of indirect 

jumps and calls. 

Bring Your Own Pop Jump Paradigm

The BYOPJ paradigm [9] allows much 

flexibility, allowing one register to be 

loaded with the address of another gadget, 

e.g. pop eax; jmp eax, which can then be 

executed. Thus, this allows for gadgets 

to be chained together. Two options are 

possible with this approach. 

First, a ret could be loaded into the register, 

and whenever EAX is called, e.g. jmp eax, 

call eax, it functions as a ROP gadget, 

causing a ret, using the stack in the normal 

manner. 

The other approach is the register could 

point to another JOP gadget, allowing 

them to be chained. In our example, rather 

than pointing to a ret, EAX might point to a 

JOP gadget, e.g. pop ebx; xor edx, edi; jmp 

ebx. EBX in turn could point to yet another, 

transitioning to another gadget. This 

approach could prove more labyrinthine, as 

the gadgets handle both control flow and 

more purposeful operations, e.g. setting 

up a WinAPI call. Neither of the BYOPJ 

approaches are favored by this research, 

although they are useful in extending the 

ROP attack surface.

Dispatcher Gadget Paradigm 

The dispatcher gadget paradigm [10] is the 

approach this research favors. A dispatch 

table, containing addresses of functional 
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gadgets, is create anywhere in memory. Functional gadgets can be viewed as being 

similar to ROP gadgets, used to deal with mitigations or set up WinAPI calls. The 

dispatcher is a special gadget that orchestrates control flow. It can advance forwards 

or backwards in a predictable fashion; it then dereferences and executes functional 

gadgets. An exploit writer can place functional gadgets inside the dispatch table. After 

each functional gadget, the dispatcher is called again, advancing to the next functional 

gadget until the JOP chain is complete, as seen in the diagram.

While some make the distinction between JOP and call-oriented programming (COP)[11], 

they actually are one in the same. The primary difference is indirect calls push the address 

of the next instruction onto the stack. This could interfere with WinAPI arguments being 

set up. However, this can be compensated for with a small stack pivot, such as a pop or 

add esp, 4, restoring the stack to what it was. Thus, by intermixing indirect jumps and 

calls, we can significantly enrich the JOP attack surface. To distinguish between them 

seems unnecessarily pedantic, not reflective of real-world usage.

Though not used for control flow, the stack still plays a critical role, as it holds arguments 

for WinAPI calls; it also may hold values for pop instructions. For exploit writers first 

encountering JOP, it should be emphasized the dispatch table is separate from and not 

intermixed with stack values; both form separate parts of the payload, and they may 

even be in separate parts of memory.

JOP ROCKET

The JOP ROCKET [6–8] is a mature tool dedicated to discovery and classification of 

JOP gadgets, with many features to aid an exploit author in being successful with JOP. 

Not only was there previously no documentation on practical details of doing JOP in 

a modern Windows environment, but there were no dedicated tools to discover JOP.  

Tools such as such as Mona [12], ROPgadget [13], and Ropper [14] were dedicated to 

ROP, but provided only highly minimal, if any, placeholder support for JOP. Without a 

Figure 1. Control flow in JOP is established via a dispatch table and dispatcher gadget, allowing for 

functional gadgets to be executed one after the other.

dedicated tool, it would have been a monumental effort to find sufficient gadgets for an 

approach of pure JOP. 

Firstly, the JOP gadget discovery algorithm is significantly more complex than its ROP 

counterpart. The algorithm to discover ROP gadgets is simple: find a C3 opcode for ret; 

disassemble backwards to discover all useful gadgets. This includes finding unintended 

instructions through what is known as opcode splitting. 

Thus, from push 0xc354ba55, if we were to start execution in the middle of the instruction, 

we could produce the unintended instruction of push esp; ret, as shown in the figure. Such 

opcode splitting expands the attack surface significantly. With JOP, there are dozens of 

opcodes to search for.

The attack surface for JOP can be vastly expanded by enumerating these unintended 

instructions. Searching for ROP in a manual process could be very tedious, and one 

could do this in a debugger or disassembler. However, with JOP, because there are 

numerous opcodes to search for, this takes more time and effort. 

Moreover, once gadgets were found, they would need to be separated by registers, as 

some are reserved for dispatch table and the dispatcher.  The most important gadgets 

are dispatchers; finding these will dictate the choices of what is to come. With scores of 

impractical, repetitious gadgets, finding a dispatcher would be non-trivial. Thus, we were 

faced with a research problem of there being no dedicated tools supporting JOP gadget 

discovery and classification [5, 9, 10, 15, 16]. Without solving this and related problems, 

JOP would likely be impractical except for the most highly dedicated exploit authors.

ROP without a dedicated toolset would be laborious, yet the available tools tremendously 

simplify it, and what might otherwise be inaccessible, has long since become simple. In 

that same vein, JOP ROCKET provides a highly efficient solution to this research problem, 

taking what would require many man hours of labor and reducing it a task that could be 

completed in as little as a minute. 

Design of JOP ROCKET

We use design science methodology [17] to create in an artifact that is an instantiation of all 

the many JOP methods that the tool encompasses; this artifact is JOP ROCKET itself. The 

result is an object-oriented, highly modular Python program, comprised of over 30,000 

lines of code, with hundreds of data structures and numerous functions. ROCKET provides 

a suite of utilities related to JOP gadget discovery and classification, allowing users to 

Figure 2. Opcode splitting is used with code-reuse attacks to find useful, unintended instructions.
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construct JOP manually, 

and it also automates JOP 

chain construction, utilizing 

a series of stack pivots to 

bounce from one location to 

the next, and then making a 

dereferenced WinAPI call 

with the stack parameters 

already in place.

JOP ROCKET makes several 

contributions. First, it uses 

a refinement of the JOP 

gadget discovery algorithm 

to search for and discover 

all possible opcodes for 

indirect jumps and calls that 

could be used for JOP. 

Second, while finding these 

gadgets, it simultaneously 

classifies gadgets into over 

a hundred categories, based 

on operation performed 

and registers affected; this 

also includes dispatcher 

gadgets, which we discuss 

in a separate section. 

Finally, as we discuss in 

its own section, ROCKET 

supports automatic JOP 

chain construction, allowing 

for complete JOP chains to 

be built to bypass DEP.

JOP Gadget Discovery 

and Classification

With JOP, the process of 

gadget discovery is more 

nuanced, as the JOP 

ROCKET searches for 49 

unique opcodes, including 

ones for indirect calls and 

jumps, e.g. jmp eax, and 

there are dereferenced, 

indirect jumps and calls, 

e.g. jmp dword ptr [eax], 

as well as dereferenced, 

indirect jumps to a register 

and an offset, e.g. jmp 

dword ptr [eax+0x201]. It is 

the opcodes that must be 

searched for, rather than 

the Assembly mnemonics 

that might be intended 

instructions. 

Each of these 49 opcodes 

begins with FF, an 

commonly used opcode, 

allowing for unintended 

instructions to be found. 

ROCKET will first search for 

FF and if found it will search 

for the remaining opcodes 

that correspond to specific 

types of indirect jumps and 

calls; searching for one 

opcode and then those 

remaining allows for a very 

substantial performance 

enhancement, particularly 

with larger binaries. 

Once opcodes are 

found, JOP ROCKET will 

immediately find all possible 

gadgets that can be derived 

from it, by generating small 

chunks of disassembly, from 

2 to 20 bytes, created by 

disassembling backwards. 

By iterating through each 

chunk, we ensure all 

unintended instructions 

are found. ROCKET will 

only save unique gadgets. 

ROCKET’s algorithm to 

discover JOP gadgets is 

a novel refinement of the 

original algorithm [10], 

ensuring  all JOP gadgets 

are found. As the code 

is lengthy and complex, 

we refer the reader to the 

GitHub [8].

Once an indirect jump 

or call is found, ROCKET 

simultaneously performs 

classifications of the gadget 

into myriad categories, 

based on the operation used 

and the register affected, 

with over a hundred 

classifications possible. 

All gadgets are classified 

immediately after being 

found, before searching 

for the next opcode. 

Having gadgets classified 

into broad categories like 

mov and subcategories 

like the registered affects 

lets users easily retrieve 

specific gadgets sought. 

The algorithm saves each 

register at the address of 

the target operation. 

While expanding the attack 

surface with unintended 

instructions is critical for 

any code-reuse attack 

tool, lead to some highly 

impractical gadgets. Thus, 

JOP ROCKET employs 

filtering to eliminate most 

impractical gadgets. For 

instance, mov dword ptr 

[edi + esi], 34; ret; jmp ebx 

would not be useful; it 

would be quietly discarded.

Once gadgets are found 

and classified, they are 

simultaneously saved into 

hundreds of data structures.  

Only minimal bookkeeping 

data is saved with no actual 

opcodes or text preserved. 

This bookkeeping data 

allows for gadgets to be 

called upon and generated 

on the fly. 

A user can select the 

types of gadgets they are 

interested, and output will be 

produced, according to their 

specifications, in seconds. 

For some functions, limited 

emulation is performed 

on gadgets, to discover 

stack pivot amounts.Once 

a user selects desired 

output on the print menu, 

their selections are used 

to generate the output on 

the fly, saved as text files. 

This is done by using the 

minimal bookkeeping data 

to carve out small chunks 

of opcodes, which are 

each sent to Capstone and 

disassembled, and this is 

used by JOP ROCKET to 

generate the gadgets. 

The user has a lot of flexibility 

to select only operations 

of interest to them. For 

instance, perhaps they only 

want to see gadgets that 

mov a value into EDI; that 

specificity is allowed.

NOVEL VARIATION OF JOP USING MULTIPLE 
STACK PIVOTS

Previously it had seemed that to create a JOP chain 

through automation would be impossible, owing to JOP’s 

much greater complexity with control flow, with dispatch 

table, dispatcher gadgets, functional gadgets, and the 

restrictive use of registers. The dispatch registers must be 

preserved to point to the dispatcher and dispatch table. 

With ROP, the technique that Mona uses to set up a ROP 

chain is pushad, populating registers with parameter 

values for VirtualProtect and VirtualAlloc. After pushad, 

then the stack would be set up, and then a pointer to the 

WinAPI function could be dereferenced and jumped to, 

allowing DEP to be bypassed. In the case of VirtualProtect, 

memory could be changed to RWX, allowing for shellcode 

to be executed, and with VirtualAlloc, memory could be 

allocated with RWX permissions. Yet, with JOP there is no 

similar gadget like pushad to easily facilitate automation.

With JOP, it seemed that just a manual process of 

painstakingly pushing stack values or otherwise manually 

setting up each WinAPI parameter in the correct would be 

the only approach. However, an alternative method is to 

use a series of stack pivots. That is, we could simply push 

all the WinAPI arguments, return address, and function 

pointer onto the stack in the correct order as part of the 

ipayload. Then, a series of stack pivots could be used to 

reach these arguments.  

While this approach is not always  reliable, it can work 

if EIP is at a predictable distance from the desired stack 

values after the vulnerability is triggered. For instance, if 

the WinAPI arguments are found to be 0x3000 bytes from 

where ESP is located after the vulnerability is triggered, 

then a stack pivot could be sought that is at least 0x3000 

bytes from it, using one or more stack pivots. We can 

precisely calculate the distance, and if this is not possible, 

we can come as close as we can and use JOP nops at the 

start of the dispatch table.

One requirement for the automated generation of a code-

reuse attack chain is following some preset recipe. With 

ROP, it is simple to use pushad as the cornerstone of the 
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recipe. Rules can govern how specific inputs 

could be crafted to populate each register, 

based on available gadgets. The focus is in 

providing a certain predetermined order of 

values that could be used as arguments to 

WinAPI functions. 

With Mona, there is much subtlety and 

nuance, providing a variety of ways to obtain 

the desired register values. With ROCKET, 

using a series of stack pivots to reach the 

WinAPI arguments is a simple approach 

for automating JOP chain generation. This 

method also allows for a JOP chain to be 

achieved in a relatively small number of 

gadgets, whereas manually crafting each 

parameter value would take far more 

gadgets.

The approach to JOP with multiple stack 

pivots is depicted in the figure. Two stack 

pivots are used to add 0x700 to ESP, 

while another adds 0x500, and another, 

0x20. The total pivot is 0x1320. If the stack 

values were 0x1315 bytes away, the pivots 

would take us within 0xB bytes of that 

location. With padding and pivots, it could 

be possible to precisely reach the payload, 

while JOP nops could also be used in the 

beginning of the dispatch table if not quite 

precise. 

The next gadget following the stack pivots 

is pop eax, which is used to move a pointer 

to VirtualProtect into EAX. That is then 

dereferenced with a jmp dword ptr [eax]¸ 

thereby beginning the call to VirtualProtect, 

with all the needed arguments and the 

return address on the stack. 

The ideal setup for this is when the payload 

is within a fixed, predictable distance that 

can be determined programmatically, e.g. 

X bytes from a particular part the binary at 

a specific point during the exploit. Placing 

the dispatch table on the stack would be 

simplest, but the heap could work. 

Figure 3. Hypothetical JOP chain using a series of stack pivots to adjust esp to point to WinAPI 

function arguments. 

Automatic JOP Chain Generation to Bypass DEP

JOP ROCKET performs analysis of available 

gadgets to determine how to create the 

JOP chain.  First, it uses two ROP gadgets 

to set up JOP, and then a JOP gadget is 

initiates the chain. 

Beyond this, the chain is pure JOP, free 

of rets. ROCKET then identifies pointers 

to WinAPI functions that can be used to 

help bypass DEP, such as VirtualAlloc 

and VirtualProtect. If these are not found, 

a place holder of 0xdeadc0de is found, 

as it can be possible to extrapolate these 

gadget addresses. This and appropriate 

parameters are placed on the stack. 

ROCKET identifies a dispatcher gadget, 

adding padding to the dispatch table 

between functional gadgets; the padding 

is calculated based on distance moved. 

If no dispatcher is found, this is left as 

a placeholder. ROCKET then finds the 

necessary stack pivots that falls within the 

specified, acceptable range. 

Finally, JOP ROCKET will find a pop to 

load the WinAPI function address from the 

stack, then making a dereferenced jump 

to VirtualProtect or VirtualAlloc, to bypass 

DEP.

ROCKET maintains continuity between 

registers. To facilitate this, ROCKET identifies 

the dispatch registers, including the register 

being added to and dereferenced by the 

dispatcher, pointing to the dispatch table, 

and the register pointing to the dispatcher, 

which each functional gadget ends in. For 

purposes of simplicity, subsequent gadgets 

avoid usage of the dispatch registers, and 

all functional gadgets end in the same 

register.

The art of exploit development is an 

iterative process. Thus, for various obscure 

reasons, some exploits may not work. 

ROCKET helps with this process by creating 

as many possible JOP chains as possible. It 

does this from two standpoints. 

First, it finds unique chains for functional 

gadgets that end in every register except 

ESP, regardless of dispatcher used, 

providing multiple possibilities. Second, 

ROCKET will create 5 different chains for 

each register, using different stack pivots. 

Thus, if one proved to be problematic for 

some obscure reason, there would be 

other choices available. For some binaries, 

not all registers will support this stack pivot 

approach, as available stack pivot gadgets 

may be in conflict with dispatch registers. 

ROCKET will populate different chains for 

VirtualProtect and VirtualAlloc, to achieve 

the target stack pivot range. The range 

minimum is the actual distance from how 

far ESP is when a vulnerability is triggered 

to where the dispatch table is located. The 

user may enter a minimum and maximum 

for the acceptable range, so that the stack 

pivot amount is appropriate to the exploit. 

Although there is a default value, it is 

recommended to enter the true range. After 

all, if there is a large stack pivot gadget 

and no smaller gadgets for a register, then 

ROCKET might not display any results for 

that register, due to lack of smaller pivots.  

What is available with the attack surface is 

most visible with an accurate stack pivot 

range. 
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Figure 4. Python exploit script containing a JOP chain to bypass DEP with VirtualProtect, generated by 

JOP ROCKET.

With ROP, we intermix our ROP gadgets 

and other values that might go on the 

stack, via pop, etc. With JOP, the stack 

values generated by ROCKET, including 

the WinAPI arguments, the function pointer, 

and the return address, are separate from 

the dispatch table. Some stack values may 

need to be customized by the user. 

It is also possible some parameters may 

need to be generated dynamically, such 

as a return address, which is outside the 

scope of what ROCKET does. It may not 

always be possible input the stack values 

directly, due to bad byte limitations.

If so, dummy values can be supplied; 

those could later be overwritten. This 

would require manual techniques such as 

described elsewhere in this paper.

ROCKET produces a fully developed 

Python script. Still, there is a requirement 

for an initial vulnerability, which much be 

triggered. Logic for the vulnerability will 

need to be added to the Python script. 

ROCKET’s JOP chain has two functions, 

creating ROP and JOP functions, and it 

also has a vp_stack, consisting of the stack 

values. ROCKET also provides other typical 

exploit essentials as placeholders.

Addresses with Bad Bytes Used for Stack Pivoting

Although ROCKET can generate a JOP chain that bypasses DEP, a manual approach may 

be preferred in some situations, such as when function pointers or gadget addresses 

contain bad bytes. To address this issue, techniques similar to those in the Gadget 

Addresses Containing Bad Bytes section can be used. 

First, encoded values for the relevant stack pivot addresses can be loaded into registers. 

Afterwards, these encoded addresses can be modified via an instruction such as xor, 

neg, or add, to load the stack pivot address into the register. Afterwards, a simple jmp 

instruction can be used to execute the stack pivot containing bad bytes. Thus, we can 

call a gadget despite there being bad bytes in its address.

The figure shown above displays an example of using two gadgets whose addresses 

contain bad bytes to perform a stack pivot. The address of the gadget add esp, 0x40 

is loaded into EAX using a neg instruction to avoid bad bytes. Although the first stack 

pivot’s address has not been supplied in the payload, it can still be executed via the use 

of jmp eax. 

Once the first stack pivot completes, an xor edx, edi instruction is used to load the value 

0x00131222 into EDX. Since this is the address of the second stack pivot, jmp edx allows 

the gadget to be executed. Now a total pivot of 0x6b bytes has been performed. If this 

were the desired pivot to the start of parameters, the WinAPI function could be called at 

this point to bypass DEP.

NOVEL DISPATCHERS AND THE TWO-GADGET DISPATCHER

The single most important JOP gadget is the dispatcher, as it orchestrates control 

flow for the exploit. The dispatcher predictably changes a value in a register, which 

is dereferenced; the dispatcher itself is pointed to by a register. The ideal form of the 

dispatcher is a very short gadget that only minimally modifies the dispatch table index, 

as long as it changes at least 4 bytes, the size of a gadget address. 

An ideal dispatcher gadget is short and predictably changes the dispatcher by a small 

constant, e.g. add ebx, 0x6 ; jmp dword ptr [ebx] or sub edi, 0x8; jmp dword ptr [edi]. While 

Figure 5. An example of the stack pivoting approach while avoiding bad bytes in some gadgets.
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ideal, these forms of the dispatcher can scarcer, so others that are less desirable may be 

necessary. For instance, we could have add ebx, edi; jmp dword ptr [ebx]. This example 

requires three registers being preserved, which tend to be restrictive. Expanding the 

size of the dispatcher from 2 lines to a few may be necessary. 

The danger in increasing the size of the dispatcher is in clobbering dispatch registers, 

ruining the chain. Alternatively, registers used by functional gadgets could have their 

usefulness reduced, e.g. add ebp, 0x08; add edx, 0x8; jmp dword ptr [ebp]. If EDX was 

added to with every invocation of the dispatcher, this would need to be accounted for.

The figure shows an example of a dispatcher executing functional gadgets, with the 

dispatch table  shown in Immunity’s memory dump window. Functional gadget addresses 

are listed in the dispatch table and are separated by four bytes of padding.  

When the dispatcher executes, it increments EDI by eight bytes and jumps to the next 

functional gadget found at that address. Each functional gadget ends in a jmp edx which 

is loaded with the address of the dispatcher gadget. 

 

Figure 6. The ideal form of the dispatcher gadget is to predictably modify the dispatch table.

Figure 7. Diagram from an exploit showing the flow of execution from dispatcher gadget to functional 

gadget and back.

Finding suitable dispatcher gadgets previously was a significant hindrance to the exploit 

development process. After all, without a viable dispatcher gadget the mechanics of 

control flow will not work. 

While the aforementioned gadgets are ideal, this research makes several novel 

contributions in the form of dispatcher gadgets. Firstly, we extend the single-gadget form 

of the dispatcher, introducing new instructions that can be used for this purpose. 

Secondly, we introduce the two-gadget dispatcher, opening potentially vastly more 

possibilities for dispatchers. These are important contributions, allowing pure JOP to 

be possible where it otherwise might not be. The single gadget forms we introduce are 

lea, which is more similar to add and sub. The others are single opcode gadgets that 

predictably modify a register, advancing it forward by 4 or 8 bytes at a time.

This research makes a novel contribution with lea as a dispatcher. While lea instructions 

are plentiful, the required form of lea is not, as we need to load the register and some 

value into the same register, e.g. lea eax [eax + 0x28]. 

We introduce the novel dispatcher lodsd/lodsq. This moves a single dword from [ESI] to 

EAX, and it adds 4 or 8 to ESI. Thus, after the each lodsq or lodsq, ESI would have been 

increased by 4 or 8, and then ESI would be dereferenced, directly, e.g.  lodsd; jmp dword 

ptr[esi] or indirectly, e.g. lodsd; mov ebx, esi; jmp dword ptr [ebx]. One drawback is EAX 

would be overwritten each time, limiting usage of that register. 

In a similar vein, we introduce novel dispatchers cmpsd and movsd. One limitation for 

cmpsd is it would be tied to memory addresses at ESI and EDI, limiting usage of those 

registers, as they would need to point at valid memory. With each cmpsd, the memory 

addresses pointed to by ESI and EDI would be incremented by 4 bytes, so ESI or EDI 

could be dereferenced. 

As with lodsd, this could be done in a single gadget, e.g. cmpsd; jmp dword ptr [esi] or 

cmpsd; jmp dword ptr [edi], or across two gadgets, e.g. cmpsd; jmp ebx followed by jmp 

dword ptr [esi] or jmp dword ptr [edi]. 

With cmpsd, it would be logical to have either ESI or EDI dereference the dispatch 

table, while the other could point to either of the gadgets that comprise the two-gadget 

Figure 8. Other variant dispatcher gadgets.
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dispatcher, if in use. This would guarantee each register points to valid memory and 

ensure neither register is wasted. Movsd also increments by 4 bytes, while using both 

ESI and EDI to point to memory. 

With movsd, the contents of ESI are moved to EDI, so only ESI could point to the dispatch 

table.  With each invocation of the dispatcher, [EDI] would be overwritten, though it could 

be used in functional gadgets with some planning.

This research has also made an important contribution by presenting a new two-gadget 

dispatcher, making the requirements for finding a dispatcher less restrictive. Rather than 

being reliant upon just one gadget, we expand possibilities with two gadgets chained 

together. The first gadget can modify any register, regardless of what is subsequently 

dereferenced, e.g. add edi, 0x20; jmp ebp. The second gadget performs the dereferencing 

in just one line, e.g. jmp dword ptr [ebx]. 

ROCKET provides functionality to discover what we call empty jump dereferences; we 

use the term empty because this form of the gadget may exist as only one line, as an 

unintentional gadget. If expanded to two lines, it would transform into something else. By 

searching for empty jump dereferences, ROCKET nearly always finds a jump dereference 

for all registers, even when none are naturally occurring. 

Thus, for all intents and purposes, the only requirement for this two-gadget dispatcher 

is that the conditions of the first gadget be satisfied. The two-gadget dispatcher adds 

the burden of preserving an additional third dispatch register. A larger binary with a rich 

attack surface would prove more conducive to a two-gadget dispatcher.

The two-gadget dispatcher makes it possible to use call gadgets for dispatching. The 

first gadget of the pair may end in a call, e.g. add ebx, 0x28; call esi. Because a call 

instruction adds the address of the next instruction to the stack, cleaning up ESP is 

necessary. Gadgets like add esp, 0x4; jmp dword ptr [ebx] or pop reg; jmp dword ptr 

[ebx] would be effective. 

Figure 9. Two-gadget dispatcher, utilizing a jmp in the dispatcher index gadget.

Figure 10. Two-gadget dispatcher, utilizing call in the dispatcher index gadget and a compensatory 

pop in the dispatcher dereference gadget.

While usage of call can be compensated for, it comes at a cost, as now the register used 

in the pop will always be overwritten with each invocation of the dispatcher. The register 

still could be used within functional gadgets, but its value would not persist.

A similar dispatcher can be seen in the example above, showing an actual exploit using 

a two-gadget dispatcher.  Each functional gadget still returns execution to the first 

dispatcher gadget, as usual. In this case, the EDX register is used to store the address of 

the first dispatcher. 

Afterwards, this dispatcher gadget increments the value of EDI, the dispatch table 

register, and performs a call esi instruction. The call instruction pushes EIP onto the 

stack. ESI contains the address of the second dispatcher gadget, which performs a pop 

eax to restore the previous value of ESP. Finally, the next functional gadget is executed 

via jmp dword ptr [edi].

Figure 11. Diagram showing the steps taken to get from one functional gadget to the next when using a 

two-gadget dispatcher. Pop is used to reduce side effects from the first dispatcher’s call instruction.
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The lodsd or lodqd instructions present an interesting use case for two-gadget 

dispatchers. Typically, there are intervening lines between lodsd and the control transfer, 

making many lodsd gadgets unusable. Lodsd also requires that ESI point to accessible 

memory; this must be the dispatch table. EAX is overwritten with lodsd, meaning if EAX 

was used in functional gadgets, it would not persist. Similar to lodsd, cmpsd and movsd 

present useful opportunities for the two-gadget dispatcher. 

It is also possible to transition from one dispatcher to another, if the attack surface is 

sufficiently limited to justify doing so. To do this, one need load the register holding the 

dispatcher with the address of the new dispatcher. The dispatch table would need to 

reflect changes in padding. By doing this, we could use of functional gadgets that would 

have side effects that would make them otherwise unusable. 

MANUAL TECHNIQUES FOR JOP

While JOP ROCKET automates construction 

of a JOP chain to bypass DEP, there may 

be times when an exploit author prefers to 

use manual techniques to create the JOP. 

While JOP was first written about in the 

academic literature a decade ago, it was 

very much theoretical, with many practical 

details of usage absent. 

To create complete JOP chains, it has been 

necessary to explore and innovate some 

of these techniques. Some of what follows 

are new techniques we have developed 

specifically for JOP, while others are 

variations on what has been done already 

with ROP.  

Our goal is to provide useful techniques, 

so that if an exploit writer wishes to use 

JOP, there is available documentation. As 

such, the focus is not in trying to distinguish 

what may be our original contribution, 

refinement, or extension, but simply just 

to share the wealth of knowledge we have 

developed. 

Completing the Initial JOP Setup

After gaining control of execution via a 

vulnerability like a buffer overflow or SEH 

overwrite, the first step towards building a 

JOP exploit is establishing control flow, so 

that the dispatch table and dispatcher can 

be reached. With JOP, all registers reserved 

for addresses to dispatcher gadgets or 

the dispatch table need to be loaded with 

addresses first. The registers that are 

Figure 12. Lodsd is a very practical instruction for a two gadget-dispatcher.

reserved depends on which dispatcher 

gadget is being used and the available 

set of functional gadgets. A traditional 

dispatcher requires that two registers be 

reserved, and a two-gadget dispatcher 

necessitates that a third register be set 

aside. 

While the dispatcher gadget requires a 

register be reserved for the dispatch table, 

the register set aside for the dispatcher 

gadget can be chosen freely based on 

available functional gadgets. 

For example, with the dispatcher gadget 

sub esi, 0x8; jmp dword ptr [esi], the 

dispatch table register must be ESI; 

however, the dispatcher gadget register 

could be chosen based on availability of 

functional gadgets. If many useful gadgets 

end in jmp eax, for example, it may be wise 

to select EAX for this purpose.

If it is desirable to create an exploit that 

exclusively uses JOP and no other code-

reuse techniques, it could be possible to 

use a singular JOP gadget. However, this is 

far from ideal in practice, given scarcity of 

such gadgets. 

Since the JOP control flow will not be 

in effect until each necessary register 

contains the appropriate value, this 

technique is limited to the use of one JOP 

setup gadget. This existence of this gadget 

is far from guaranteed, as it will need to 

satisfy several specific conditions, though 

popad could be useful. It will need to load 

values for needed registers and may need 

to avoid bad bytes.

Because of these limitations, it is 

recommended to use a short ROP chain to 

set up control flow registers. ROP gadgets 

are more plentiful than JOP gadgets, and 

individual tasks can be given to specific 

ROP gadgets, e.g. pop reg, rather than 

needing one gadget to perform them all. 

Once the control flow registers are set up, 

a gadget such as jmp edx can be used to 

return execution to the dispatcher gadget.

Using WinAPI Functions

As with ROP, a function call that bypasses 

DEP can be done via JOP. The specific 

gadgets and techniques used to perform 

the call via JOP will look different due to its s 

unique control flow and available gadgets. 

The process of writing function parameters 

to memory when using JOP is quite unlike 

the typical ROP workflow. 

In many ROP exploits, many registers will 

be simultaneously loaded with function 

parameter values, and the pushad 

instruction will be used in order to write 

them all to memory. The need for JOP to 

reserve two or more dispatch registers 

often eliminates the possibility of pushad. 

For JOP, it is recommended to set aside 

a section of memory to be used for the 

function parameters. This location should 

be writable and relatively close to the 

region of memory used pointed to by ESP, 

allowing for more convenient pivoting. 

The stack pointer is used to determine which 

values are parameters at the time of the 

function call. With JOP, it may be possible to 

supply some function parameters directly 

in the payload. If parameters lack bad 

bytes and do not need to be generated 

programmatically via JOP, they can be put 

into the payload with no issues. 
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For other parameters that do contain bad bytes or otherwise cannot be included, we can 

supply dummy values in their stead. These placeholders will be overwritten with the real 

values via JOP. They serve as markers that will aid in the exploit development process. 

The figure below shows values for VirtualProtect parameters included within a JOP 

exploit payload. Since the lpAddress, lpfOldProtect, and return address parameters do 

not require bad bytes, their final values are given directly. On the other hand, dwSize and 

flNewProtect will need bad bytes, so these locations have been supplied with dummy 

values that will later be overwritten. 

Useful Functional Gadgets

JOP presents the opportunity to use many 

specialized gadgets, each designed to 

perform  specific tasks. Many of these 

novel JOP gadgets are often very different 

than their ROP counterparts.

Stack Pivots

Since the JOP control flow is disconnected 

from ESP, stack pivoting will often be used 

during JOP exploits to move ESP to useful 

positions. Stack-based instructions such as 

pop and push will be extremely helpful if 

not necessary during most JOP exploits, 

since pop allows for custom values to be 

loaded, and push can perform memory 

overwrites or help transfer values from 

register to register. 

Pop instructions can also be used to stack 

pivot.  Since pop increments ESP by four 

bytes, many pop gadgets can be chained 

together to move ESP in the positive 

direction. This pivot could be used after 

loading a function parameter value to 

relocate ESP to a higher address, where an 

overwrite can be performed using a push 

gadget. For example, a pop ebx; jmp ecx 

gadget could be repeated three times to 

perform a stack pivot of twelve bytes. Next, 

a push eax; jmp ecx gadget could be used 

to perform a push overwrite at the new 

location.

Conversely, push instructions are much 

less useful as stack pivots. While it is true 

that they decrement ESP by four bytes, they 

are much more difficult to use effectively, 

as they will also overwrite the contents of 

the address ESP lands at. 

Figure 14 shows an example of this 

occurring when push ebx; jmp ecx gadgets 

are used to pivot ESP to a lower location in 

memory. The stack diagram shows that 

Figure 13. Initial and final values for each VirtualProtect parameter.

after execution, each address pivoted to via push ebx is overwritten. Because of this, 

other types of instructions such as sub esp will be more suited for stack pivots in the 

negative direction. 

Powerful stack pivoting gadgets are those with operations such as mov esp, ebx or xor 

esp, eax. While gadgets similar to these are rare, they allow for stack pivots to arbitrary 

locations in memory as long as the other register can be controlled. 

Additionally, gadgets such as xchg esp, ebx; jmp edi would be useful both for stack 

pivoting as well as dynamic generation of values. Since these types of instructions are 

not commonly created by most compilers, these gadgets may often be found via opcode 

splitting.

Overwrite Gadgets

When constructing a WinAPI function 

call, bad bytes are often an obstacle 

to overcome. As such, dummy values 

may need to be supplied for function 

parameters, and several overwrites may 

need to occur. Performing the task of 

loading a function parameter into a register 

while avoiding bad bytes, followed by a 

subsequent overwrite will often be the 

JOP chain’s main purpose. The availability 

of JOP gadgets is often limited, so different 

and unusual gadgets may need to be used, 

to complete this task; however, some occur 

more often or are more straightforward to 

use than others.

PUSH

Push register instructions are relatively 

common in compiler-generated code and 

are only one opcode long. Because of 

this, the chances that there exists a usable 

gadget with this instruction are higher than 

some other types of possible overwrite 

gadgets. During normal x86 ISA, the 

push instruction is generally used to add 

to the stack with no consideration to that 

memory’s previous value. 

In JOP, it can be used to overwrite a value 

within memory. If push is used this way, a 

stack pivot will need allow ESP to reach 

the location for the overwrite. Since push 

decrements ESP by four bytes before 

overwriting the value at the new address, 

ESP will need to be pivoted to the address 

four bytes above the desired location. 

Additionally, another pivot will often be 

needed, to move ESP where custom values 

can be added via pop.

Figure 14. Diagram demonstrating the problems associated with push as a stack pivot instruction.
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When a push register gadget is used, 

the register first needs to be loaded with 

the appropriate value for the overwrite. 

Whether the overwrite is used to avoid bad 

bytes or to dynamically generate a value, a 

short series of gadgets will likely be needed 

to load the value. In the figure shown, a 

push ecx gadget is used to overwrite a 

dummy variable with 0x40. 

First, the pop ecx; pop edx; jmp ebx gadget is used to pop the encoded value into 

ECX and an XOR key into EDX. ECX is XORed with EDX to produce the result; then a 

pivot occurs that relocates ESP to the location four bytes above the appropriate dummy 

variable’s address. Next, push ecx; jmp ebx; overwrites the dummy variable with 0x40, 

the real value. 

A generalized approach can be defined when repetitively performing push overwrites 

for each dummy variable. The stack must be laid out in a similar manner to that seen in 

the figure. Each encoded parameter and its corresponding dummy variable are located 

the same distance from each other. 

For example, the distance between the first encoded parameter and dummy variable is 

0xC bytes, which is the same as the distance between the second encoded parameter 

and dummy variable. The encoded parameter should be loaded into a register via the 

Figure 15. Small JOP chain showing a dummy 

variable overwrite using the push instruction.

use of a gadget such as 

pop eax; jmp edx. The pop 

eax instruction will add four 

bytes to the stack. 

Next, the encoded 

parameter can be decoded 

via the use of an XOR 

gadget or similar means. A 

pivot can then be used to 

move ESP four bytes above 

the dummy variable to be 

overwritten. In this example, 

after pop eax; jmp edx a 

pivot distance of 0xC bytes 

will be needed to move ESP 

to the correct location. A 

push eax gadget then can 

be used to overwrite the 

dummy variable. 

Lastly, a pivot to move 

ESP eight bytes in the 

negative direction can be 

used to prepare for the 

next encoded parameter 

to be popped. Since the 

distances between each 

encoded parameter and 

dummy variable are the 

same, the same distances 

for each pivot can be used 

for each overwrite. 

This series of gadgets 

can be used indefinitely 

for overwrites unless the 

decoding process for 

certain parameters requires 

unique steps. The only 

parts that must be changed 

are the values supplied for 

each pop gadget. 

Figure 16. Example of a repeatable series of gadgets used to perform overwrites with the push 

instruction.

MOV DWORD PTR

While push gadgets are relatively straightforward, they 

require the use of stack pivots to ensure pushes can 

be made to the correct location. Pop gadgets are often 

available to stack pivot forwards; however, returning the 

stack pointer to a location where values can be popped 

for further overwrites may be more difficult. 

While less commonly found, gadgets of the form mov 

dword ptr[register], register can also perform overwrites 

of dummy variables. These are simpler to use, with no 

need pivoting. These gadgets will require the use of two 

registers simultaneously: the register being dereferenced 

should be loaded with the write address, and the second 

register should be loaded with the value that will be written. 

This need for multiple registers may become a concern in 

JOP, since the two dispatch registers are already reserved. 

This lowers the chances that a mov dword ptr gadget 

will use registers that are available and not reserved for 

control flow purposes. Side effects from other gadgets 

that are needed to load register values also become 

more problematic once additional registers need to be 

preserved. 

The JOP chain snippet above shows an example of an 

overwrite performed using mov dword ptr [esi], edi. In this 

example, the address being written to does not contain 

any bad bytes, so the value can be popped directly into 

ESI without any issues. 

However, EDI will be used to store the parameter value 

being written, which contains null bytes. The value 

cannot be supplied directly in the payload, so the neg edi 

Figure 17. Small JOP chain showing a dummy variable overwrite 

using the mov dword ptr instruction.
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instruction is used to avoid bad bytes by acting on an encoded value loaded via pop edi. 

Once the values are loaded, mov dword ptr [esi],edi will overwrite the address at ESI with 

the contents of EDI.

The gadget containing neg edi also has an unwanted side effect that can be seen in 

the xor ebx, ebx instruction. Each time this gadget executes, the contents of EBX will be 

reverted to zero. As long as EBX is not a register important to the control flow of the JOP 

chain, this gadget will work. 

However, if the JOP chain used a dispatcher such as add ebx,4; jmp dword ptr [ebx], the 

register containing the dispatch table’s address would be ruined upon its execution. In 

the figure below, a two-gadget dispatcher is shown alongside the mov dword ptr gadget. 

Between these two gadgets, few registers remain available. EAX, ECX, and EBP are 

reserved as dispatch registers. ESI and EDI are used in the mov dword ptr gadget, and 

ESP is the stack pointer. The only registers that can be freely used at this point are EBX 

and EDX.

Avoiding Bad Bytes with JOP Gadgets

In many cases, values that must be loaded into registers will contain bytes that are not 

able to be included within the payload. When this occurs, the value cannot be loaded 

directly with a gadget such as pop eax; jmp edx and a corresponding value contained 

within the payload. Values that may be needed that could have this issue include the 

address of the dispatch table, the address of the dispatcher gadget, and specific values 

that must be used for WinAPI function parameters. 

 

Figure 18. With two-gadget dispatchers, available registers can be scarce while performing certain 

tasks.

Figure 19. JOP Chain snippet showing the use of XOR to avoid bad bytes.

Figure 19 shows two XOR gadgets can be helpful in situations like this. First pop eax; 

pop ebx is performed, followed by xor eax, ebx. To avoid a bad byte, the EBX register will 

be used as an XOR key. This key can contain any value that does not include bad bytes. 

Next, the desired value can be XORed with the XOR key. The result will be the value that 

should be loaded into EAX. Once the second gadget executes and EAX is XORed with 

the key, the resulting value of EAX will be the final value with bad bytes. 

This type of sequence is useful as it allows for an arbitrary value to be reached with 

flexibility as to the bytes used within the payload. Other versions of this sequence may 

exist, where certain pop instructions may not exist that correspond to one of the registers 

involved in the XOR operation, requiring additional setup.

If there is a pop eax gadget available, a gadget such as mov eax, 0x11111111; jmp ecx could 

be used to ensure that 0x11111111 is loaded into EAX before an XOR operation. This way, 

the desired value can still be reached by choosing the appropriate XOR key. The specific 

value that is loaded into EAX with the mov instruction is not significant, as long as it can 

be XORed to a useful value. 

The downside to this method is that the XOR key cannot be chosen, and the encoded 

final value may contain bad bytes. If this is the case, that particular XOR key will need to 

be replaced or used to decode a different value. 

table += struct.pack(‘<L’, 0x112212a6) #MOV ECX,0x0552A200 # MOV EBP,0x40204040 # JMP EDX
table += tablePad  
table += struct.pack(‘<L’, 0x11221289) #POP EAX # JMP EDX
stackChain += struct.pack(‘<L’, 0x054a5e90) #xor’d to 0x0018fc90 - write addr for dwSize
table += tablePad
table += struct.pack(‘<L’, 0x1122141c) # XOR ECX,EAX # MOV EBX,ECX # JMP EDX
table += tablePad
table += struct.pack(‘<L’, 0x112212a6) # MOV ECX,0x0552A200 # MOV EBP,0x40204040 # JMP EDX
table += tablePad  
table += struct.pack(‘<L’, 0x11221289) # POP EAX # JMP EDX
stackChain += struct.pack(‘<L’, 0x0552a050) # xor’d to 0x250 - dwsize value
table += tablePad  
table += struct.pack(‘<L’, 0x112212b7) # XOR ECX,EAX # MOV EBP,ECX # JMP EDX
table += tablePad
table += struct.pack(‘<L’, 0x11221480)# MOV [EBX],ECX # JMP  EDX # write dwSize param = 0x250

An excerpt of a JOP exploit shows the method of using two XORs to avoid bad bytes. 

These are used to set up register values for a dummy variable overwrite via the instruction 

mov dword ptr [ebx],ecx. 

First, the mov ecx, 0x552a200 instruction loads an XOR key into ECX. Afterwards, the 

encoded value for the overwrite address is popped into EAX. The value is decoded 

using the gadget xor ecx, eax; mov ebx,ecx; jmp edx, which also moves this overwrite 

address value into EBX. The first two gadgets are repeated again, in order to load the 

XOR key and encoded parameter value for dwSize. 

Figure 20. JOP chain snippet that avoids bad bytes while performing a mov dword ptr overwrite.
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Then xor ecx, eax; mov ebp,ecx; jmp edx 

is used to decode the parameter value. 

This gadget is slightly different from the 

previous XOR gadget, as it loads EBP with 

ECX’s value, leaving EBX intact. Now that 

the overwrite address is contained within 

EBX and the parameter value is in EBX, the 

mov [ebx],ecx; jmp edx gadget performs 

the overwrite.

There are several other ways to address 

bad bytes with bitwise or mathematical 

operations. A series of gadgets such as 

pop eax; jmp esi followed by neg eax; jmp 

edi gadget could be used to supply the 

negated version of the problematic bytes, 

rather than the raw value. The negated 

value is first loaded into EAX via  pop 

eax. The two’s complement negation is 

equivalent to adding 1 to a NOT operation. 

If the desired final value is 0x40, the 

correct value to pop into eax is 0xffffffc0, 

since this value is equivalent to adding 1 to 

the result of not 0x00000040. After neg 

eax executes, EAX will contain the desired 

value.

 

In other cases, add or sub could be used 

in place of xor to achieve similar results. 

Integer overflows or underflows also can 

be used to obtain results that otherwise 

seem impossible, such as adding two 

larger numbers together to result in a 

smaller value with null bytes. For example, 

the figure above shows an add eax, 0x60 

instruction being used to load a value 

smaller than 0x60 into EAX. First, 0x60 

should be subtracted from the desired 

value using two’s complement to find the 

value to load into EAX. After popping this 

value into EAX, add eax, 0x60 triggers 

an integer overflow that results in EAX 

containing the desired value.  There are 

many additional methods available aside 

from those discussed. 

Gadget Addresses Containing Bad 

Bytes

In some instances, traditional methods 

of combatting bad bytes may prove 

problematic, for various reasons. For 

example, the useful gadget popad; jmp ecx 

may be located at the address 0x00112233. 

However, with some effort these gadgets 

can still be utilized. Since it is not possible 

to alter addresses within the payload to fix 

the bad byte issue, additional gadgets will 

need to be used to prepare the bad byte 

gadget for use. 

First techniques specified in the previous 

section can be used to load the gadget’s 

address into a register. Once the register is 

loaded with the correct address, a simple 

jmp register gadget can be used to transfer 

execution to the gadget containing bad 

bytes. Although the gadget will not be 

included in the dispatch table or payload in 

general, it will still be executed at this point 

in the exploit.

The figure above shows part of a JOP 

chain that can load the value into EAX. A 

sub eax instruction is used to avoid bad 

bytes. To determine the correct value to 

Figure 21. Using an integer overflow to load a 

small value with the ADD instruction.

Figure 22. JOP chain designed to execute a 

gadget at 0x00112233.

load with the pop eax instruction, the 0x62110000 constant is added to the bad byte 

gadget’s address. Once the sub eax, 0x62110000 loads the address into EAX, a jmp eax 

instruction is used to execute the gadget containing bad bytes. 

While this method requires additional effort, it also allows a new subset of gadgets to 

be used. JOP gadgets are relatively scarce when compared to ROP gadgets, and JOP’s 

nature may further restrict certain gadgets from being used. 

As such, it is important to maximize possibilities as certain gadgets may be necessary 

for an exploit to work and may not have alternatives. Since gadgets may come from 

other modules that are loaded at different memory locations, situations may occur where 

every gadget found within a certain module may be unusable without this technique.  

Dereferencing Function Pointers

To perform a WinAPI function call, the JOP chain will need to jump to the address of the 

function. However, since ASLR will likely be enabled for the DLL containing the function, 

hardcoding a function address into the exploit is not viable. 

Instead, a pointer to the relevant function address must be found within the binary. 

Pointers to VirtualProtect and VirtualAlloc can be found within binaries by using JOP 

ROCKET. Once the pointer is loaded into a register, it will need to be dereferenced to 

transfer execution to the address of the function. 

There are many possible gadgets available to achieve this goal. One simple method is 

jmp dword ptr [eax], where the dereference and jump happens simultaneously. When 

such a gadget is not available, a gadget such as mov ecx, dword ptr [eax]; jmp edi could 

be used after loading EAX with the pointer. This places the function’s true address into 

ECX, allowing a jmp ecx gadget to execute the function. Alternatively, the dereferenced 

address could be pushed onto the stack with push ecx. 

Next, a jmp dword ptr [esp] gadget could dereference ESP, jumping to the WinAPI function.

When using jmp dword ptr [esp] to jump to a function address, the address must be in 

memory at the stack pointer’s location. Normally this address would contain the desired 

return address when calling a function; however, this is not possible in this situation. 

As a result of the return address parameter containing the function address, the function 

will call itself again once it is done executing. At this point, all the original function 

parameters will be popped off of the stack and ESP will be located at the next address. 

An example of this situation 

can be seen in the figure, 

which shows the parameters 

used for the first execution 

of the function. After the 

function completes and is 

called again via its return 

Figure 23. Parameters for VirtualProtect resulting from a jmp dword 

ptr [esp] instruction being used to call the function.
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This may limit this technique’s 

portability. If the exploit can detect 

the operating system it is run on, it 

may be possible to programmatically 

choose the correct offset to use.

Dereferences with an Offset

Many useful gadgets contain dereferencing instructions. While instructions such as 

jmp dword ptr [eax], mov dword ptr [eax], eax, and xor eax, dword ptr [eax] may all be 

used for different purposes during JOP, they all still perform dereferences. In practice, 

many instructions may perform dereferences that are based on hardcoded offsets from 

registers instead of the raw register values. When these instructions are encountered, 

they can often still be used without the use of any additional gadgets. 

For example, in the figure above a mov dword ptr [esi + 0x80] instruction is being used to 

perform a memory overwrite. In order to write to the correct address, the 0x80 value can 

be subtracted from the desired address to find the value that should be loaded into ESI.

In some cases, inclusion of an offset may introduce the problem of bad bytes into a 

section of a JOP chain. In Figure 28 the mov eax, dword ptr[eax + 0x4] instruction is 

being used to dereference the address 0x11227004. In order to account for the offset, 

the value 0x11227000 could be popped into EAX; however, this value ends in the byte 

\x00, which is a bad byte in many exploits. Instead of using the modified value, the 

original value 0x11227004 is popped into EAX. Next, the value is modified using several 

dec eax gadgets to account for the offset.

address, the second set of parameters will begin at 0x0018fc9c. In some cases, such as 

with VirtualProtect, it may be possible to set up a harmless second function call that uses 

the correct return address; in this example we will simply have another VirtualProtect 

call, serving no purpose. 

By setting the return address used for the second function call, a final return address 

can be specified even though the jmp dword ptr [esp] method did not allow for the 

first function’s return address to be specified. Even if the second function call does not 

perform any actions successfully, it will likely still jump to the return address at the end 

of its execution. 

Generating Addresses of Other Functions

Once dereferenced, a function’s address possibly can be used to locate the address of 

another function contained within the same DLL. A tool such as IDA Disassembler can be 

used to calculate the offset between the address of the function whose pointer can be 

obtained.  As shown in the figures below, the function address indicated by the pointer 

should be inspected within a debugger to ensure the version of the function being used 

is known. 

Once the function name has been verified, its address can be found in IDA.  From the 

figure below, VirtualProtectStub’s address is 0x7dd7432f. This address can then be 

used to calculate an offset to another function.  For example, the virtual address of the 

CreateProcessA function can be found within IDA. Afterwards, the distance between the 

two functions can be calculated as -0x32bd bytes.

This information can be used within a JOP exploit to call a function lacking a pointer in the 

image executable. After dereferencing the pointer, JOP can be used to add or subtract 

the offset from the original function’s address to find the address of another function. 

This technique will depend on operating system or specific release, as virtual addresses 

of functions within DLLs may change, as additional functions may be added.

Figure 24. Dereferencing the function pointer in WinDbg and then inspecting the disassembly at the 

function address.

Figure 25. The function’s virtual address can be found using IDA. With this knowledge, offsets to other 

functions can be found.

Figure 26. Using WinDbg to verify that the offset leads to 

the correct function.

Figure 27. This JOP chain snippet uses a mov dword ptr gadget that contains an offset.

Figure 28. This JOP chain snippet cannot supply the value needed for the dereferenced offset. 

Instead, additional gadgets must be used to avoid bad bytes.
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JOP NOPS AND DISPATCH TABLES

In ROP exploits, the idea of a ROP NOP refers to a gadget consisting of nothing but the 

ret instruction, which directs execution to the next ROP gadget without performing any 

other actions. JOP exploits have an equivalent type of gadget, which are referred to as 

JOP NOPs.  These gadgets do nothing except pass execution back to the dispatcher 

gadget. 

A gadget such as jmp ebx could be considered a JOP NOP, as long as EBX contains the 

address of the dispatcher gadget. These gadgets may find a use when the exact address 

of the dispatch table is not known. When this situation occurs, many instances of a JOP 

NOP gadget can be supplied around the predicted location, and the dispatch table can 

be supplied at the end of this series of gadgets. 

Then, the exploit can then guess the location of the dispatch table. If the guessed address 

is located at the address of a JOP NOP, many will be executed until the dispatch table is 

eventually reached. This technique is similar to NOP slides, which are commonly found 

before shellcode. 

The figure below shows an example of a JOP NOP slide being used. Although the address 

of the dispatch table is guessed incorrectly, the series of JOP NOPs brings execution to 

the dispatch table without error. 

It should be taken into consideration that alignment can become an issue when utilizing 

JOP NOPs. It is possible that the guessed dispatch table address could be misaligned 

with the address to the JOP NOP, likely causing an access violation. 

For example, if the JOP NOP address is 0x11223344 and the guessed dispatch table 

address is misaligned by one byte, the dispatcher would attempt to execute at the 

address 0x22334411. Because of this issue, there may only be a one in four chance of 

guessing a correctly aligned value in some situations. 

Additionally, when a dispatcher gadget requires padding between gadget addresses, 

the JOP NOP slide could enter the dispatch table at a location other than the first gadget 

address. It may be possible to alleviate this issue by using the address of the previous 

Figure 29. A JOP NOP slide can be used when the exact address of the dispatch table is not known.

gadget as padding until the next gadget, as shown in the figure below. With this technique, 

multiple dispatch table entry points could become valid. 

Another approach that could be taken could be to use and esp to ensure the stack was 

aligned on multiples of four, and to attempt to ensure that the dispatch table began at an 

address that was a multiple of four.

Since the chance that this technique will work is not guaranteed, it may be necessary 

for an exploit to run multiple times before a JOP NOP slide is successful, if addressing 

stack alignment is either not feasible or proves ineffective. This technique still drastically 

improves the probability an exploit with an unknown dispatch table address may work, 

assuming an attacker can occupy an expanse of memory .

SHELLCODE-LESS JOP

This research makes a novel contribution by presenting shellcode-less JOP. This more 

demanding approach can result in an effective JOP chain that avoids the need for certain 

commonly used functions to bypass DEP, 

e.g. VirtualAlloc and VirtualProtect. Instead, 

the WinAPI functions that the shellcode 

would have called could be called directly 

by JOP. 

Shellcode need not be the only delivery 

method available for an attack. By chaining 

together multiple function calls, malicious 

actions can be performed without 

bypassing DEP or executing shellcode. 

This technique has been used with ROP 

to create a new administrator user on a 

machine without shellcode [18]. 

Since this technique will require many 

function parameters, payload size 

restrictions may become a concern, if bad 

Figure 30. When the dispatcher gadget modifies its register by more than four bytes, specialized 

padding may become useful. Here, entering the dispatch table at 0x0018fac8 or 0x0018facc gives the 

same result.

Figure 31. Example payload for a shellcode-less 

attack.
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bytes are an issue. It is recommended not 

to use this technique, unless there is a large 

amount of space available for the payload 

or bad bytes are not an issue. 

The method described in the 4.2 Addresses 

with Bad Bytes Used for Stack Pivoting can 

be used, although it is possible to do so in 

a more manual way, pushing each value 

onto the stack at a time.

WinAPI function calls can be executed in 

succession via a few different techniques. 

The most practical method to execute one 

function after another will be to set up the 

parameters for each function, specifying 

each return address as the address of the 

next function. Calling the first function will 

cause each function to execute in order.  

The general layout of this type of payload 

can be seen in the payload figure.  

First, a JOP chain will set up the parameters 

for each function that is called. This step 

may not be necessary if bad bytes are 

not a concern, and no values need to be 

programmatically generated via JOP. 

The next step is a series of stack pivots to 

the correct location for the first function. 

Once the stack pivot moves ESP to the 

correct location, the function can be called. 

Each function will execute, performing its 

designated task. Since each return address 

specifies the address of the next function, 

the end of the first function’s execution will 

lead directly to the execution of the second 

function, and so on. No JOP is necessary 

to transfer execution from one function to 

the next. 

In other cases, it may be desirable to return 

to JOP after each function completes. 

This technique may be used when it is 

not possible to set up the parameters for 

each function at the same time, such as 

if a parameter for one function depends 

on a value that another function wrote to 

memory. 

Instead of specifying the next function 

as the return address each time, it may 

be possible to specify the address of the 

dispatcher gadget instead. If registers for 

the dispatch table and dispatcher gadget 

are not preserved, it may be necessary 

to utilize one or more setup gadgets via 

ROP to load these values into the relevant 

registers before giving execution back to 

the dispatcher.

The functions that are utilized can vary 

depending on the task and complexity of 

the attack. Some functions require few 

parameters, and some may require many; 

the types of parameters supplied will also 

vary. Although some WinAPI functions 

require raw values for their parameters, 

many will require pointers to strings or 

specific structures.

It will be important to know the address 

these items will be located at, as this address 

must be given as a function parameter. The 

payload needs to be built in such a way 

that these may be easily found in memory 

and called upon. 

Again, the caveat is that if there are bad 

characters, they may need to be addressed. 

Given that strings and structures are merely 

bytes in memory, we can extrapolate 

and determine programmatically where 

each is, allowing for pointers to strings or 

structures to be called. Strings are often 

straightforward to construct; however, 

documentation for structures should be 

examined to determine the correct format. 

If a structure is formatted incorrectly, the 

WinAPI call will likely fail. 

FINAL REMARKS

While much has been written about ROP, 

very little of actual practical value has been 

written about JOP, as most of it is theoretical 

and confined to the academic literature. 

This research has worked to make JOP 

both more feasible and accessible. To that 

end, this has been achieved by developing 

a powerful tool, dedicated to every aspect 

of JOP. 

We have made an extensive study of 

the fundamental nature of JOP itself, 

discovering and creating many techniques 

for practical JOP usage, much of which has 

never been previously documented. 

In fact, with this research, we have gone 

and extended what is even possible with 

JOP, with JOP chain automation and by 

greatly expanding what is possible with 

the dispatcher gadget, with variant forms 

of the dispatcher and by introducing the 

two-gadget dispatcher. 

It is possible to do a JOP exploit entirely 

without the use of a single ret, assuming the 

binary is of sufficient size and with suitable 

gadgets. To be successful necessitates that 

some form of the dispatcher can be found, 

and while we have expanded what can be 

acceptable as a dispatcher, there will be 

times when there is no viable dispatcher. 

In those cases, JOP can still be of immense 

value to the exploit author, as JOP gadgets 

can be used to expand the attack surface 

for ROP, by allowing intermixing of JOP and 

ROP.

This research in no way endeavors to 

make a claim that JOP is superior to ROP 

as a code-reuse attack; it is merely a more 

unorthodox alternative, requiring additional 

set up. The end result of this research is 

that when JOP is possible, not only is there 

a useful tool to address all aspects of JOP, 

but equally importantly, there now exists 

the practical knowledgebase to be able 

to actually construct a JOP exploit, while 

at the same time dealing with many of the 

numerous obstacles that may arise during 

exploitation. 

Certainly, JOP will not always be viable with 

every exploit, but when the appropriate 

gadgets are there in place, JOP may be an 

excellent alternative. 

Our Contributions

This paper makes several important 

contributions. First, we present JOP 

ROCKET, the JOP gadget discovery and 

classification tool. This research presents 

a novel contribution for automatic 

construction of a JOP chain to bypass 

DEP. In addition, we present our novel 

dispatchers, including the highly innovative 

two-gadget dispatcher. This innovation 

can greatly expand possible dispatcher 

gadgets, whereas the single-gadget 

dispatcher is limited due to scarcity. 

Next, we introduced the concept of 

shellcode-less JOP, an approach to JOP 

where instead of trying to bypass DEP 

to set up shellcode to be executed, we 

directly call the same WinAPI for the same 

functionality. Finally, this paper introduces 

several innovative manual techniques for 

the practical usage of JOP in a modern 

Windows environment. □
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Terms and their meanings

Sending of arbitrary packets 

Enables attackers to send and modify data transfers between the PoS terminal and its 

processing network. Attackers can forge and alter transactions in the transaction stream. 

Furthermore, they can attack the acquiring bank via server-side vulnerabilities.

Cloning payment cards 

Enables attackers to copy an individual’s credit card information. Duplicate data is written 

to a new credit card, which an attacker can now run fraudulent transactions elsewhere 

with their clone. This includes Track2 data, CVV2/CVC2 codes and PIN codes.

Cloning terminals

Attackers can make a functional clone of a PoS terminal and run fraudulent transactions 

through it, all they would need is unattended access to the terminal. They infect the terminal, 

and a copy is made of its configuration information. The terminal, itself, includes all of the 

necessary information an attacker needs to clone it. The information is then placed on 

an identical terminal, which is activated and ready to use. With full control of their clone, 

attackers have a few possibilities of carrying out payment attacks in their own benefit. 

Persistency of malware

Enables the attacker’s malware to survive even after the device reboots. When malware 

is persistent, the implications are much more severe. When it’s not, the attackers need to 

reinfect the device or the lifetime of the attack is extremely short. 

Abstract
Over 2018 and 2019, we found serious vulnerabilities in the two biggest 
Point of Sales (PoS) vendors: Verifone and Ingenico. The affected 
devices are Verifone VX520, Verifone MX series, and the Ingenico 
Telium 2 series PoS terminals. First, we were able to extract the 
firmware from the devices. Then we were able to use manufacturer’s 
default or hardcoded passwords to enter configuration “service 
modes.” From there, we were able to exploit vulnerabilities within the 
terminal’s applications to execute our own arbitrary code. With these 
vulnerabilities, an attacker could alter payment transaction details, clone 
payment cards, clone PoS terminals, and install persistent malware. 

POS VULNERABILITIES

Ingenico Telium 2 Series Vulnerabilities

More information about Ingenico Telium 2 vulnerabilities is available here. 

Verifone VX Series Vulnerabilities

The following vulnerabilities were discovered in Verifone’s VX series of PoS terminals.

Attaining “System mode” access for Verifone VX 520

Attackers can easily gain “System mode” access to the PoS terminal. The credentials are 

within Verifone’s VX 520 Reference Guide. 

The System mode allows the attacker to change 

system values. Changing the *GO value is helpful as it’s 

responsible for setting the application that loads after 

reboot.

Undeclared shell.out mode access (CVE-2019-

14716)

Our research extracted and decrypted the PoS 

terminal’s flash content. We discovered a T:SHELL.

OUT application that’s trusted and signed by Verifone. 

This application enables the attacker to access the 

terminal’s file system. Without authentication, the 

attacker can gain control over the terminal’s process 

management through the process that follows. On the 

terminal, the attacker can run T:SHELL.OUT and specify 

the terminal’s serial port. They gain control by attaching 

a cable to the terminal’s RS232 serial port and using an 

external device with a TTY Shell application.  

Figure 1 depicts the default password as listed within the VX 520 Reference Guide. 

Figure 2 depicts setting the *GO 

value within the terminal’s interface.

https://www.paymentvillage.org/resources 
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To run the application, the attacker needs to change settings to:
*GO=T:SHELL.OUT 
*ARG=”/DEV/COM1” 

Figure 3 

depicts 

all of the 

available 

commands 

within the 

SHELL.OUT 

application.

Figure 4 depicts the terminal’s display while it’s within the SHELL.OUT mode. 

Stack overflow in Verix OS core during run() execution (CVE-2019-14717)

Figure 5 depicts the sch_run_not_vsa() function.  We threw a stack overflow while 

executing the Run() function. We traced it back to the filename copy process of the 

sch_run_not_vsa() function (address 0x4002509).

The attacker can overwrite variables beyond the pc[32] array and its return address.

Figure 6 (left) depicts the run() overflow indication on the terminal’s display.

The lower 5 bits of the CPSR (Current Program Status Register) is 0x13 which indicates 

#define CPSR_M_SVC 0x13U. This indicates supervisor mode within the Verix Core 

subsystem. Combined with the prior vulnerability, our attacker now has maximum 

privileges on the system.

Figure 5 depicts the sch_run_not_vsa() function.
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Integrity control bypass (CVE-2019-14712)

Our researcher found it’s possible to bypass Verifone’s file integrity controls. 

What are they? Verifone’s file integrity controls who is authorized to load application 

files onto terminals. It verifies the file’s origin, sender’s identity, and integrity of the file’s 

information. It uses digital signatures, cryptographic keys, and digital certificates. 

The process is basically: 

• Developer applies for a certificate from Verifone. 

• The developer creates an app and signs it with their certificate and password. 

• When loading the app on the terminal, the terminal compares its certificates against 

the app’s signature. 

• The app is marked “authenticated” and given permission to run on the terminal 

when it passes these checks.

Let’s take a closer look of the process of deploying an app: 

1. We create an application file named APP.out.

2. Using the application file, developer certificate, and developer password, the 

VeriShield File Signing Tool creates a signature file (*.p7s).

3. Load the signature file (APP.p7s) and the original application file (APP.out) onto 

the terminal.

4. The terminal OS searches for signature files. The operating system compares 

its internal signatures against the values stored within the application file’s 

calculated signature.

5. If these values match, the operating system marks that the application file is 

approved to run on the terminal. The OS creates an .s1g file with signatures. This 

file contains Hash-based Message Authentication Code (HMAC) from the keys 

in One-Time-Programmable memory (OTP). The file has an “authenticated” 

attribute.

6. When run() is called, the terminal checks that the file has this “authenticated” 

attribute. Next, the HMAC function checks the result against the .s1g file content.

7. If all checks have been completed, file APP.OUT runs in memory. 

Some attributes from DIR command and files in SHELL.OUT: 

--gcr Authenticated signature file. 

--gc- Uploaded, but not authenticated file. 

-agc- Uploaded, and authenticated application file.

If the attacker has privileges to run code in core context, it’s possible to call the function 

of the .s1g file generation against the arbitrary application. This bypasses the integrity 

checks. 

Figure 7 above depicts an arbitrary app running 

on the terminal’s display.

Figure 8 on the right depicts the source code of 

our application exploiting this vulnerability.
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VERIFONE VX AND MX SERIES VULNERABILITIES

Vulnerabilities, described below are the part of SBI boot loading process, which affects 

both VX and MX series. Therefore, the severity is extremely high. 

To fix them, the vendor would have to update the boot loader process. This update has 

been issued by PCI in Nov 2020.

Undeclared access to the system via SBI loader (CVE-2019-14715)

The trusted loader allows for writing arbitrary code to memory during its SBI loader stage. 

All an attacker needs is physical access to the terminal.

The SBI loader enables file execution on the system through use of the XDL protocol, 

processing .SCR files, or using the command line.

Our terminal has SBI version 03_04. However, this vulnerability occurs in both earlier 

and later versions of SBI. Experts have confirmed the issue in version 03_10. Further 

details will be covered for the 03_08 version.

Figure 9 below depicts our SBI loader access.

In the case of an unsuccessful USB-flash load, the system tries to load files through the 

XDL protocol with the RS-232 serial port. The ddl.exe utility supports this protocol and is 

available from VerixOS SDK.

Figure 10 depicts the main() function (0x00189DD4 offset) of the SBI loader while Figure 

11 depicts the doXDL() function (0x00189E6C offset) of the SBI loader.

The Download File command uses the vulnerable check_bootHeader() (0x00196022 

offset) function.

On the other hand, Figure 12 depicts the XDL_Proto() function (0x001961D4 offset) of the 

SBI loader.

 

Figure 10

Figure 9
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Data is interpreted by the Executable 

module using the header format that 

follows:

Figure 13 on the left depicts the SBI 

loader file header structure.

If the loaded header file’s “signature” 

field is equal to 0xA19BC38F and the 

“type” field isn’t null (line 42), then the 

“load_addr” field is processed at the 

memory address of the loaded module 

(line 44). The content of the “load_addr” 

copies into memcpy().

That allows an attacker to write arbitrary 

code to the device’s memory within the 

SBI context. This enables executing the 

attacker’s code, including overwriting 

the SBI code itself.

Figure 11

Figure 12

Figure 14 on the right depicts the 

check_bootHeader() function 

(0x00196022 offset) of the SBI 

loader.
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3. Modify the SBI loader to call the CLI terminal function. Figure 16 below depicts the SBI 

header modifications.

 » Loader 03_04 0x00000650 with offset (0x00189E48 offset on the terminal memory) 
has bytes 03 F0 21 FE.  This is the opcode of the PROMPT() function.

4.  Load the file via ddl.exe.  Figure 17 below depicts using ddl.exe during the SBI 

load function to use an attacker’s arbitrary code.

Exploitation example

1. Get the SBI loader example. Figure 15 below depicts modification of the SBI 

loader.

2. Modify the loader:

 » 0x00000000 offset – signature

 » 0x00000010 offset – type

 » 0x00000018 offset – load_addr
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Figure 18 above depicts the CLI terminal called through the modified SBI loader.

Figure 19 below depicts our access to the terminal’s NAND-flash memory.
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ATTACKS

In our research, PoS terminals became an instrument to simulate attacks for the banks 

and service providers. They asked us to address their individual interests. They wondered 

about the practical application of our assessments, including: 

1. How easy is it to steal card details? 

2. Can we make a functional clone of the PoS terminals? 

3. Can someone send malicious requests to the authorization hosts and “steal 

money” from the bank in some way?

Let’s take a look at each of these scenarios in greater depth in the sections that follow.

Card harvesting

Instead of hacking the PoS systems, hackers can hack the PoS terminals for card’s data 

collection. However, the most popular way of doing this is known as “fake PoS.” A fake 

PoS terminal looks identical to the original hardware, the customer inserts their card, 

and a receipt prints with just an error code. The fake PoS contains memory to collect the 

credit card information that the criminal later collects. 

Figure 20 above depicts a forum listing that’s selling fake PoS.

As requested, we will try to obtain card and cardholder details from the original merchant 

PoS terminals. We imagine that some malicious insider got access to the terminal 

overnight and wants to use this for their own benefit.

There are two scenarios. 

1. First scenario is when the terminal doesn’t have a separate, secure, physical 

space for processing the card’s and cardholder’s data. This attack sounds 

easy. We need to obtain the highest kernel privileges (supervisor mode) on the 

system and then “scan” the payment processes to intercept the card’s details: 

CVV2, Track2, and PIN.

2. Second scenario is when the terminal has a dedicated chip for storing the 

crypto keys and processing 

cryptographic operations. Initially, 

this sounds like a secure way to 

handle even physical exploitation 

of devices. Hackers still can’t 

extract keys, decrypt PINs or 

magstripe tracks. However, it’s 

not nearly as secure as you might 

expect. As this research shows, 

even in Ingenico terminals 

that use dedicated chip for the 

encryption, it’s still possible to 

steal PIN codes and Track2 data. 

The main reason is because PCI 

requires terminals to send and 

store sensitive data encrypted 

but has vague requirements 

about the processing of this data. 

When we talk about cryptoprocessor, how 

sensitive information should be handled:

• The PIN is entered and passed directly 

to the cryptoprocessor.

• The cryptoprocessor encrypts the 

PIN and passes it back to the main 

processor and main app. All data 

is put in the structure of ISO8583 

authorization request and sent over to 

the acquiring bank.

But how it actually works:

1. PIN is entered and passed to the 

main app unencrypted.

2. Main app sends it to the 

cryptoprocessor and gets back 

encrypted.

3. Main app sends it over the 

network in the assembled 

ISO8583 request.

As you can see, hackers still have access 

to unencrypted data during steps “a” and 

“b.” To steal card and cardholder data, 

attackers need to create  malware that 

scrapes the memory to search for patterns 

of PIN and Track2. This memory-scraping 

malware is well-known among companies 

who suffered from card data breaches in 

the past.

It’s fair to mention that PoS vendors don’t 

write the payment applications themselves 

- there’re service providers for this purpose. 

And we found this example in one of the 

banks we worked with. That example 

is show in the section “Remote code 

execution via the built-in TRACE mode 

(CVE-2018-17765, CVE-2018-17772).”

Terminal cloning

To create a fully functional terminal clone, we 

need to extract the main payment app and, 

what’s more important, all cryptographic 

keys that terminals use, including:

• Secure SSL communication key

• MAC key for ISO8583 signing

• PIN encryption key

• Encrypted storage key

• Boot integrity control key

If all these keys are stored on the 

cryptoprocessor, it’s impossible to create a 

functional clone of the terminal. However, 

if even one key can be leaked or found 

on the main storage, such as described in 

the section “Remote code execution via 

the built-in TRACE mode (CVE-2018-17765, 

CVE-2018-17772),” this puts the whole 

ecosystem at risk. For example, hackers 

who change the Cardholder Verification 

Method (CVM) limits and priority list, won’t 

need to enter PIN codes or need to obtain 

the PIN encryption key. We’re not showing 
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here the exact location and the process of 

extraction of the necessary keys.

Insecure modes

Due to back compatibility and a lot of 

legacy features that need to be supported, 

there are terminals with insecure modes 

enabled:

• Magstripe or Technical fallback. 

 » These two modes allow using cards 
(even cards with the EMV chip) by 
only swiping them and using the 
magstripe part of the card. These 
cards can be easily bought on the 
dark market for about $5-10 each.

• Pan key or manual entry. 

 » These terminals are popular in 
hotels, airplanes and other offline 
facilities. This functionality is for 
situations when you dictate your 
card number over the phone. In 
most cases, the cashier on the other 
side of the phone puts their PoS 
terminal in manual mode to enter 
your card details (payment card 
number, expiration date, CVV, and 
postcode for additional verification) 
which is then sent to the acquiring 
bank. 

 » In many cases, your bank won’t 
even need a valid CVV code for 
these operations. Why is that? 
Let’s imagine, you’ve bought some 
expensive perfume on the trans-
Atlantic flight. You’ve landed and 
only then the flight crew discovers 
that your card doesn’t have sufficient 
balance on it. 

 » In this case, the merchant who 

already provided their product 
or service to you will try to make 
a transaction in the terminal’s 
manual mode. But wait, they didn’t 
collect your CVV code from the back 
of your card, did they? Exactly for 
these scenarios, they allow charges 
even without the correct CVV code.

• Visa Magnetic Stripe Data (MSD). 

 » This is a legacy, insecure mode, which 
sends the card’s magstripe data to 
the terminal through contactless 
N e a r - F i e l d - C o m m u n i c a t i o n 
(NFC) technology. It pre-dates 
the secure EMV standards. It’s 
predominantly used within the 
USA and was originally planned to 
be terminated effective April 2019 
by Visa’s requirement (Contactless 
Payments: Merchant Benefits and 
Implementation Considerations). 
However, that’s now slowed down 
and postponed due to the COVID-19 
outbreak. 

Under normal circumstances, a transaction 

only proceeds within these vulnerable 

modes when a few things happen:

• The merchant requests that this 

feature is enabled on their terminal.

• The acquiring bank enables this 

feature for the specific merchant on 

their network.

• The issuing bank allows that feature 

on the customer’s card.

However, our tests revealed that banks 

verify only that the terminals have been 

enabled for use with the feature. Banks 

are assuming that no one can execute 

arbitrary code, or replace the terminal’s 

configuration files to enable these features, 

themselves. This means insecure modes 

can be activated on the compromised 

terminals quite easily.

Refunds

Refunds enable customers to return 

products or services that they didn’t 

use. Typically, refunds must go back to 

the original purchase card. This helps 

to prevent money laundering schemes. 

Otherwise, criminals would go to a big-box 

retailer, pay for a new iPhone with a stolen 

card, return it a few days later for a refund 

to their personal card. And that’s just the 

tip of the iceberg for card-based money 

laundering schemes.

How does this work when customers have 

lost their original card? Or when they used 

Google Pay and have since accidently 

deleted the mobile wallet? There’s two 

solutions for those scenarios:

1. A technical solution. Each 

receipt has a reference number 

and when the cashier initiates a 

refund, they enter a reference 

number and the acquiring bank 

checks that the refund goes to 

exactly the same card. If the card 

is lost/stolen, the cashier will 

need to call the bank to initiate 

a request for a non-standard 

refund.

2. An organizational solution. 

The acquiring bank doesn’t 

check anything and allows 

refunds back to any card. All 

of the burden and liability of 

checking the card falls back on 

the merchant’s shoulders. If any 

money laundering occurs, then 

it’s the merchant’s loss and not 

the bank’s.

Many banks who use the second model 

are prone to this fraudulent scheme:

• An attacker creates a functional clone 

of the terminal as described in section 

7.2.

• An attacker enables insecure modes 

and makes high-risk transactions with 

stolen cards as described in section 

7.1.

• An attacker makes refunds back to a 

personal card.

• A month later, the issuing bank issues 

a chargeback request to the acquiring 

bank for fraudulent transactions. The 

acquiring bank contacts the merchant 

to ask for an explanation of what 

happened. The merchant has no clue. 

It’s worth noticing that when no fraud checks 

are done on the banking side, hackers won’t 

even need to make fraudulent payments 

in the first place. They can just do refunds 

for as long as the original company has 

some money on their accounts. As you can 

imagine, big supermarkets and networks 

have a lot of money on their accounts. □
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Hunting 
for bugs in 
Telegram’s 
animated 
stickers 
remote 
attack 
surface
POLICT

Executive Summary

Research is one of Shielder’s pillars – head over to our 

research page to learn more about our commitment to 

improve the security of the digital ecosystem.

What follows is my journey in researching the lottie animation 

format, its integration in mobile apps and the vulnerabilities 

triggerable by a remote attacker against any Telegram user. 

The research started in January 2020 and lasted until the 

end of August, with many pauses in between to focus on 

other projects.

During my research I have identified 13 vulnerabilities in 

total: 1 heap out-of-bounds write, 1 stack out-of-bounds 

write, 1 stack out-of-bounds read, 2 heap out-of-bound read, 

1 integer overflow leading to heap out-of-bounds read, 2 

type confusions, 5 denial-of-service (null-ptr dereferences).

All the issues I have found have been responsibly reported to 

and fixed by Telegram with updates released in September 

and October 2020:

• Telegram Android v7.1.0 (2090) (released on September 30, 

2020) and later;

• Telegram iOS v7.1 (released on September 30, 2020) and later;

• Telegram macOS v7.1 (released on October 2, 2020) and later.

Those updates include the fixes (the other types of clients 

are not affected by the vulnerabilities I have identified) – 

basically if you have updated your Telegram client in the last 

4 months you are safe. If not, I recommend you to update it 

as soon as possible.

https://www.shielder.it/advisories/
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INTRODUCTION

At the end of October ‘19 I was skimming the Telegram’s android app code, learning 

about the technologies in use and looking for potentially interesting features. Just a 

few months earlier, Telegram had introduced the animated stickers; after reading the 

blogpost I wondered how they worked under-the-hood and if they created a new image 

format for it, then forgot about it. 

Back to the skimming, I stumbled upon the rlottie folder and started googling. It turned 

out to be the Samsung native library for playing Lottie animations, originally created by 

Airbnb. I don’t know about you but the combination of Telegram, Samsung, native and 

animations instantly triggered my interest in learning more.

LOTTIE BY AIRBNB

Let’s start from the original Lottie project by Airbnb, from airbnb.io/lottie:

Lottie is a library for Android, iOS, Web, and Windows that parses Adobe After Effects 

animations exported as json with Bodymovin and renders them natively on mobile and 

on the web!

“As json” is particularly interesting here, I was expecting some tricky 90’s proprietary 

binary specification but instead they chose to use one of the most common and simple 

formats to date. (This got me also wondering whether memory corruptions would be 

harder to find, but it was too early to tell!)

As we have read, a Lottie animation is defined as a JSON with some information such as 

the frame rate “fr” and the version identifier “v” at its root, while most of the juicy features 

lie in the “layers” array.

At its minimum, a Lottie animation looks like this:

1  {
2     “v”:” “,        // version identifier
3      “fr”:1,        // frame rate
4      “ip”:0,        // in-point
5      “op”:1,        // out-point
6      “layers”:[]    // the good stuff (tm)

7  }

This doesn’t include any graphical element, but it’s useful to have a bare-minimum 

example before getting complex (especially in structure-aware fuzzing, as we will discuss 

later).

Remember the “Adobe After Effects animations exported as json” part? If you open 

such an animation it contains a lot of useless information and animation’s metadata, for 

example Adobe After Effects even supports “the Adobe ExtendScript language, which is 

an extended form of JavaScript” (!), which is included in the JSON but not supported by 

the Lottie parser we are going to talk about.

It’s important to notice here that Lottie animations are widely used, though most of the 

time via static resources such as app’s transitions and animations. Another important thing 

to notice is that other apps, such as Signal, chose Airbnb’s java/swift implementation.

RLottie BY SAMSUNG, FORKED BY TELEGRAM

Here we arrive at Samsung’s C++ library rlottie to parse Lottie animations. I’m not sure 

why Telegram’s developers decided to use this implementation instead of Airbnb’s, 

besides performance (and the chance to expose a 1-click native attack surface). 

That being said, working with an open-source library will come in handy for setting up 

the fuzzing environment and triaging the crashes, something which is not as trivial to do 

in a black-box scenario.

RLottie doesn’t support all of After Effect’s features, however it is still actively maintained 

to this day, even though I’m not 100% sure what Samsung uses rlottie for besides probably 

Samsung Galaxy Watch Apps. (If you do know/find out where it’s used let me know at @

polict_ !)

By checking the README it’s clear that writing the harness will be trivial; by looking at 

Telegram’s integration it’s even possible to copy the initialization settings and build a 1:1 

stand-alone harness.

It’s important to note here also that Telegram developers chose to fork the rlottie project 

and maintain multiple forks of it, which makes security patching especially hard. This will 

turn out to be an additional problem since the Samsung’s rlottie developers do not track 

security issues caused by untrusted animations in their project because they are not “the 

intended use case for rlottie” (quote from https://gitter.im/rLottie-dev/community ).

HARNESSING RLottie AND BUILDING A CORPUS

I had almost no experience in fuzzing before this research, so I started studying and 

learning about two of the main players at the time: AFL++ and LibFuzzer. The majority of 

entry-level writeups and walkthroughs available publicly were using AFL[++] so I started 

with it while learning more about the alternatives available. 

(Only later did I discover the perf_tips AFL++ documentation, I strongly recommend it to 

people starting out fuzzing!)

The first version of the harness was a ctrl+c/ctrl+v frankenstein but it worked well as a 

starting point:
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1   #include <rlottie.h>
2   #include <iostream>
3   #include <string>
4   #include <vector>
5   #include <array>
6
7   int entrypoint(std::string filename){
8
9       auto player = rlottie::Animation::loadFromFile(filename, NULL);
10       if (!player) {
11           printf(“error: renderer initialization failed\n”);
12           return 1;
13       }
14
15       // metadata[0] in Telegram/TMessagesProj/jni/lottie.cpp:130
16       size_t frame_count = player->totalFrame();
17       printf(“frame count:\t%zu\n”, frame_count);
18
19       // default width and height
20       uint32_t w = 512;
21       uint32_t h = 512;
22
23       // copied from https://github.com/Samsung/rlottie/blob/master/example/lottie2gif.cpp
24       auto buffer = std::unique_ptr<uint32_t[]>(new uint32_t[w * h]);
25
26       if (frame_count < 1){
27        printf(“no frames to render, quitting\n”);   
28           return 1;
29       }
30
31       printf(“starting...\n”);
32       for (size_t frame = 0; frame < frame_count; frame++) {
33           rlottie::Surface surface(buffer.get(), w, h, w * 4);
34           player->renderSync(frame, surface);
35       }
36       printf(“done!\n”);
37
38       return 0;
39
40   }
41
42   int main(int argc, char **argv){
43      if (argc < 2){
44           printf(“usage: %s <lottie.json>\n”, argv[0]);
45           return 1;
46       }
47
48       return entrypoint(std::string(argv[1]));

50   }

Having verified the harness was working, I started looking for animated stickers online 

to build a minimal corpus to start fuzzing: Telegram channels available as a webpage 

on t.me/ URLS and lottie online communities were especially useful for scraping user-

generated stickers in an automated curl-grep-gzip fashion.

FUZZING TECHNIQUES AND RESULTS

Coverage-guided fuzzing

If there’s one thing I have learned the hard way in my information security experience 

(and later again by reading twitter heh), it is that many times doing the laziest thing would 

have produced the same output as a sophisticated technique, but in way less time: this 

research was no difference.

After instrumenting and improving the harness and launching afl-fuzz, crashes started to 

appear in a matter of seconds. I thought that if anybody was fuzzing it, they were either 

exploiting the issues or still looking for ASLR-breaking gadgets – but that’s just a guess! 

From the first crash triage cycle it seemed some issues could be serious: heap-based 

out-of-bounds read/write, stack-based out-of-bounds write and high-address SEGVs all 

looked promising, so I started investigating them while studying the code and continuously 

improving and keeping the fuzzer running. 

Most of the remaining issues were null-pointer dereferences not useful from an 

exploitation perspective, however in this context - as we will see later - they might 

become an annoying denial-of-service bug for non-technical users.

Layman’s guide to crash testcase minimization (excursus)

After triaging and prioritizing the crashes I started analyzing the root-cause of each of 

them. The problem was that since the library parsed JSONs and skipped useless keys, 

the crashing testcase included a ton of unnecessary keys and values (imagine a single 

line 2KB JSON with multiple nested void keys/arrays/strings/objects). A

t the beginning I thought of writing a JSON minimizer tool in python, but remembering the 

“try lazy first” way of thinking I hacked together halfempty, ASAN and grep to bruteforce 

their way to the minimized still-crashing-in-the-same-way JSON, and it worked pretty 

well! 

Let’s have a look at one example fed to halfempty:

1 #!/bin/bash
2 timeout -k1s 4s rlottie/parser-asan /dev/stdin 2>&1 | grep -q ‘WRITE of size 4 at’ &&  

 exit 0 || exit 1

I could have added more filters to the grep (error type, $pc, stacktrace, …) but it wasn’t 

really necessary here. Afterwards I could simply run halfempty to bruteforce a minimized 

testcase:

halfempty --stable --zero-char=0x20 --output=min.json run_and_grep_hbof4write.bash raw.json

This helped because, without further checks besides checking for a SIGSEGV (test $? 

-eq 139), halfempty would have produced a minimized testcase which crashed rlottie 

with a null-pointer dereference (still a SIGSEGV but not what I was looking for).
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Heap out-of-bounds write in VGradientCache::generateGradientColorTable

Let’s walk through one of the most impactful issues I have found: a 4-bytes heap out-of-bounds write in VGradientCache::generateGradientColorTable. 

Here’s a sample ASAN report snippet with a bit of context:

==24332==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x621000001130 at pc 0x0000005652a4 bp 0x7ffef2d69190 sp 0x7ffef2d69188
WRITE of size 4 at 0x621000001130 thread T0
    #0 0x5652a3 in VGradientCache::generateGradientColorTable(std::vector<std::pair<float, VColor>, std::allocator<std::pair<float, VColor> > > const&, float, unsigned int*, int) rlottie/src/vector/ 
 vdrawhelper.cpp:159:25
    #1 0x574d5c in VGradientCache::addCacheElement(long, VGradient const&) rlottie/src/vector/vdrawhelper.cpp:125:30
    #2 0x573645 in VGradientCache::getBuffer(VGradient const&) rlottie/src/vector/vdrawhelper.cpp:87:24
    #3 0x569a39 in VSpanData::setup(VBrush const&, VPainter::CompositionMode, int) rlottie/src/vector/vdrawhelper.cpp:761:46
    #4 0x53b528 in VPainter::setBrush(VBrush const&) rlottie/src/vector/vpainter.cpp:140:22
    #5 0x5c2a15 in LOTLayerItem::render(VPainter*, VRle const&, VRle const&) rlottie/src/lottie/lottieitem.cpp:332:18
    #6 0x5c841e in LOTCompLayerItem::renderHelper(VPainter*, VRle const&, VRle const&) rlottie/src/lottie/lottieitem.cpp:651:28
    #7 0x5c7744 in LOTCompLayerItem::render(VPainter*, VRle const&, VRle const&) rlottie/src/lottie/lottieitem.cpp:602:9
    #8 0x5c0348 in LOTCompItem::render(rlottie::Surface const&) rlottie/src/lottie/lottieitem.cpp:198:17
    #9 0x591070 in AnimationImpl::render(unsigned long, rlottie::Surface const&) rlottie/src/lottie/lottieanimation.cpp:107:16
    #10 0x5922a5 in rlottie::Animation::renderSync(unsigned long, rlottie::Surface&) rlottie/src/lottie/lottieanimation.cpp:206:8
    #11 0x68b146 in entrypoint(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) rlottie_parser.cpp:40:17
    #12 0x68b40e in main rlottie_parser.cpp:60:16
    #13 0x7f22916cebf6 in __libc_start_main /build/glibc-S9d2JN/glibc-2.27/csu/../csu/libc-start.c:310

    #14 0x41e439 in _start (rlottie/parser-asan+0x41e439)

The vulnerability stems from an incorrectly bounded loop (comments are mine):

1 bool VGradientCache::generateGradientColorTable(const VGradientStops &stops,
2                                                 float                 opacity,
3                                                 uint32_t *colorTable, int size)
4 {
5     int                  dist, idist, pos = 0, i;
6     bool                 alpha = false;
7     int                  stopCount = stops.size();
8     const VGradientStop *curr, *next, *start;
9     uint32_t             curColor, nextColor;
10    float                delta, t, incr, fpos;
11
12     if (!vCompare(opacity, 1.0f)) alpha = true;
13
14    start = stops.data();
15     curr = start;
16     if (!curr->second.isOpaque()) alpha = true;
17     curColor = curr->second.premulARGB(opacity);  // out-of-bounds value, curr->second is controlled
18     incr = 1.0 / (float)size;                     // static
19     fpos = 1.5 * incr;                            // static
20
21     colorTable[pos++] = curColor;
22
23     while (fpos <= curr->first) {                 // curr->first is controlled and pos is not checked to be < size, leading to 
24         colorTable[pos] = colorTable[pos - 1];    // out-of-bounds write
25         pos++;
26         fpos += incr;
27    }
28    [...]
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As we can see in the snippet, pos is not 

checked against size (the colorTable array 

size), leading to writing out-of-bounds 4 

bytes after the end of the colorTable array 

allocated in heap memory.

Specifically, while fpos, size and incr are 

static, curr->first and curr->second come 

directly from the animated sticker but 

colorTable is an uint32_t array of static size 

1024, hence it is possible to overwrite an 

arbitrary amount of heap memory after it by 

carefully using a float number as curr->first 

in the animated sticker file.

The written bytes are controlled via the 

sticker file too, but constrained to ARGB 

encoding performed in premulARGB() and 

getColorReplacement().

While it’s probably only useful in 32bit 

environments, coupled with an additional 

ASLR-bypass gadget it might lead to remote 

code execution. That being said, during my 

research I couldn’t find memory-probing 

oracles or remote infoleaks to overcome 

this protection so I didn’t investigate further.

The advisories for my other issues are 

available at shielder.it/advisories!

Structure-aware fuzzing

While analyzing the coverage traces I 

noticed that most of the mutated testcases 

were breaking the JSON syntax or messing 

up the few required JSON keys, reaching 

very shallow code. But in those same days I 

learnt about structure-aware fuzzing, which 

looked like what I was after: since rlottie 

parses structured data (JSONs), i needed 

some way to mutate the animations without 

breaking its syntax; also, I wasn’t much 

interested in fuzzing the JSON decoding 

because it was handled by rapidjson inside 

rlottie itself. While the -x dictionary flag 

in AFL++ improved the situation, it didn’t 

instruct the fuzzer how to add or remove 

meaningful elements to the animation.

Let’s have a little introduction on structure- 

/ grammar-aware fuzzing for who’s not 

familiar with it (feel free to skip this 

paragraph if you do!). From the structure-

aware fuzzing wiki I linked earlier:

Coverage-guided mutation-based 

fuzzers, such as libFuzzer or AFL, are 

not restricted to a single input type and 

do not require grammar definitions. 

Thus, mutation-based fuzzers are 

generally easier to set up and use than 

their generation-based counterparts. 

But the lack of an input grammar can 

also result in inefficient fuzzing for 

complicated input types, where any 

traditional mutation (e.g. bit flipping) 

leads to an invalid input rejected by the 

target API in the early stage of parsing.

As an example let’s imagine we feed 

to AFL++ a corpus made of JSONs and 

point it against the harness we have seen 

earlier, what testcases would it produce? 

Mostly broken JSONs. This is because 

by applying “standard mutations” (e.g. bit 

flipping) it might mutate a char responsible 

for the JSON structure, breaking its syntax. 

This will lead to shallow code coverage, 

because the parser will exit once it detects 

the JSON is malformed, and to a lot of 

wasted executions, because they couldn’t 

advance the coverage. 

But if we instead create a grammar 

definition about how are lottie animations 

actually structured, we’d be able to have 

more control about the testcase mutations. 

This is where protobuf and libprotobuf-

mutator come in the picture: by creating a 

grammar definition in the protobuf syntax and using libprotobuf-mutator to instruct the 

fuzzer how to mutate a protobuf message, we can produce always syntactically valid 

testcases (i.e. in this case valid JSONs) to feed the target harness.

Let’s see an example protobuf message I have written for the main structure by reading 

the source code and mattbas’s python-lottie project documentation:

Writing the rlottie protobuf grammar to use 

as an intermediate format turned out to 

be particularly time consuming: while the 

library code was easily readable, it required 

some tricky design decisions (proto2 or 

proto3? multiple types with repeated keys 

or minimal type + add-ons? etc…) not trivial 

as setting up the coverage-guided harness, 

leading to a ~1k LOC harness. 

Moreover (probably because of that monster harness) the fuzzer was way slower than 

“simple” coverage-guided benchmarks (x4 slowdown on the same hardware).

To sum up, the structure-aware fuzzer turned out to be faster than the “simple” coverage-

guided strategy in finding the same bugs, but required a bigger time investment upfront 

just to start it, so I’m happy for the knowledge I have acquired but I’d probably recommend 

and use it against more complex codebases than rlottie, e.g. browser’s IPC.

TELEGRAM’S ANIMATED STICKERS ATTACK SURFACE

So how are animated stickers implemented? They are basically files uploaded to 

Telegram’s cloud drive and referenced in messages by setting the application/x-tgsticker 

mime type and attaching the cloud coordinates. 

A curious limitation I noticed is that in unencrypted chats (the default mode for chats, i.e. 

not “secret chats”) during my testing I couldn’t receive the malicious sticker to my other 

testing accounts; this got me wondering whether Telegram servers were doing any kind 

of parsing/filtering of the stickers I uploaded, but that’s hard to tell since Telegram’s 

server-side code is not open-source (yet?). 

This also limited the potential impact since only secret chats were usable to send an 

arbitrary animated sticker, probably because the file uploads are E2E encrypted too.

Another interesting thing I noticed about secret chats is that, besides the macOS client, 

it’s not possible to configure the client to prevent secret chats from being automatically 

accepted on that device. This allowed me to automatically start a secret chat and send 

animated stickers to anyone via Frida (thanks @thezero for the help with the JavaScript 

code!), until after my reports Telegram introduced the “Filter New Chats from Non-

Contacts” setting (which is still non-default so probably not enabled by everyone).
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Unfortunately the animated stickers are parsed and rendered only when the chat is 

opened, making these vulnerabilities reachable only if the chat is opened by clicking on 

it. 

Furthermore, since the animated sticker is downloaded on the device, everytime the 

chat is opened the issue triggers; this turned useless memory corruptions (such as null-

pointer dereferences) into an annoyingly persistent crash which would have prevented 

non-technical victims from accessing the previous messages in the chat. (Tech-savvy 

people could have extracted them from the local Telegram’s database, or used another 

client altogether.)

How they patched it

After my reports, Telegram introduced an interesting way to prevent such attack surface 

from being available remotely in a single click, without breaking the end-to-end encryption 

altogether: each and every animated sticker received in a secret chat (remember that 

malicious stickers in normal chats are filtered) are verified to be actually part of a sticker 

set (or “sticker pack”, i.e. a collection of stickers of a specific theme/topic). 

This probably comes from my own proof-of-concepts where I faked sticker sets references, 

but at the end of the day it successfully prevents malicious stickers from being decoded 

on the victim device since during the creation of a sticker set every sticker is parsed 

(yes, I guess the issues I have found could have been used against Telegram servers 

themselves in the creation of a sticker pack, but again since the server-side code is not 

open-source that’s just a guess).

We can see an example implementation of these new checks in 

verifyAnimatedStickerMessage, part of Telegram’s Android source code:

1 TLRPC.Document document = MessageObject.getDocument(message);
2 String name = MessageObject.getStickerSetName(document);
3 if (TextUtils.isEmpty(name)) {
4     return;
5}
6 TLRPC.TL_messages_stickerSet stickerSet = stickerSetsByName.get(name);
7 if (stickerSet != null) {
8    for (int a = 0, N = stickerSet.documents.size(); a < N; a++) {
9        TLRPC.Document sticker = stickerSet.documents.get(a);
10        if (sticker.id == document.id && sticker.dc_id == document.dc_id) {
11             message.stickerVerified = 1;
12             break;
13        }
14    }
15    return;
16 }

sticker.id == document.id verifies that the unique Telegram cloud file identifier (used to 

reference also stickers, even in secret chats) equals the identifier of a sticker in a public 

sticker set, while sticker.dc_id == document.dc_id verifies that the datacenter identifiers 

match (I’m not 100% sure this was necessary). This 

way a potential attacker not only needs to find 

additional issues in the rlottie forks, but also a bypass 

for these new authenticity checks.

CONCLUSION

Before starting this research in 2019 I would have 

been pretty skeptical if you had asked me whether 

the following year I’d find a single memory corruption 

in Telegram. Today I shared with you the story of 

how I have found 13, some with a higher impact than 

others but all which were promptly fixed by Telegram 

for all the device families supporting secret chats: 

Android, iOS and macOS. 

This research helped me understand once more 

that it’s not trivial to limit attack surfaces at scale 

in end-to-end encrypted contexts without losing 

functionalities. I hope that this blogpost inspired 

you in learning more about fuzzing and information 

security in general. If you have any comment or tip 

for improvement it would be greatly appreciated: 

you can reach me at @polict_ – until next time! □
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CROWDSTRIKE
DETECTION 

REPORT “TheZoo”
Filipi Pires

INTRODUCTION

The purpose of this document, it was to execute several 

efficiency and detection tests in our lab environment protected 

with an endpoint solution, provided by CrowdStrike, this 

document brings the result of the defensive security analysis 

with an offensive mindset performed in the execution of 33 

folders download with Malwares by The Zoo repository in 

our environment.

Regarding the test performed, the first objective it was to 

simulate targeted attacks using known malware to obtain a 

panoramic view of the resilience presented by the solution, 

with regard to the efficiency in its detection by signatures, 

downloading these artifacts directly on the victim’s machine. 

The second objective consisted of analyzing the detection 

of those same 32 folders download with Malwares (or those 

not detected yet) when they were changed directories, the 

idea here is to work with manipulation of samples (without 

execution). 

The third focal objective it was the execution of a ScanNow 

inside victim’s machines for effectiveness analysis.

With the final product, the front responsible for the product 

will have an instrument capable of guiding a process 

of mitigation and / or correction, as well as optimized 

improvement, based on the criticality of risks.
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Scope

• The efficiency and detection analysis had as target the Crowdstrike Endpoint 

Protection application in Sensor Version: 5.36.11809.0

• Installed in the windows machine Windows 10 Pro;  Hostname - Threat-Hunting-
Win10-POC, as you can see in the picture below:

 

Image 1.1: Windows 10 Pro 2019 Virtual Machine

Project Summary 

The execution of the security analysis tests of the Threat Hunting team was carried out 

through the execution of 33 folders with many Malwares in a virtualized environment. 

It was carried out in a controlled and simulated a real environment, together with their 

respective best practices of the security policies applied. 

The test lasted for 2 days, without count the weekend, along with the making of this 

document. The intrusion test started on 8 October 2020 and it was completed on 19 

October 2020.

RUNNING THE TESTS

Description

A virtual machine with Windows 10 operating system it was deployed to perform the 

appropriate tests, as well as the creation of a security policy on the management platform 

(Threat-Hunting–Win10-POC) and applied to due device.

Image 1.2:  Virtual Machine with Policy applied 

The policy used was named Default (Windows), following the best practices 

recommended by the manufacturer, and, for testing purposes, all due actions were 

based on an aggressive detection method.

Image 1.3: Policy Next-Gen Antivirus (Default Policy) 
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One of the differences that we see with CrowdStrike is the non-use of Icon related of the 

binary.

Image 1.4: Installation binary information 

First Test 

The first stage of the tests was downloading 33 folders of different kinds of malwares. 

All of which are known to be older and are in the public repository, maintained by the 

security community called The Zoo. The purpose of this test was to simulate the same 

process as a user receiving and extracting a .zip file in their own environment.

Image 1.5: Download 33 Folders with malicious files

Image 1.6: Extraction of 33 Folders with malicious files

https://github.com/ytisf/theZoo/tree/master/malwares/Binaries
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After performing the action of extracting the files, it was possible to verify that CrowdStrike 

Security Endpoint didn’t detect any malware when it was downloaded to the victim 

machine. But if executed inside the environment, it could perform an infection.

All those malwares are known and should be detected by signature, but they didn’t.

Regarding some with the vendor CrowdStrike doesn’t work based on signature, this is 

one of the reasons, low consumption of computational resources:

Machine learning (ML) is used for pre-execution prevention. Falcon Host employs sophisticated 

machine learning algorithms that can analyze millions of file characteristics to determine if a 

file is malicious. This signature-less technology enables Falcon Host to detect and block both 

known and unknown malware. CrowdStrike ML technology has been independently tested and 

furthermore, it was provided to VirusTotal to contribute to the security community for the benefit 

of all. For more information about CrowdStrike ML, read the blog, “CrowdStrike Machine Learning 

and VirusTotal”. [1] [2]

Second Test  

The second stage of the tests was through the transfer of folders to another directory 

within the same machine, the purpose of this test was to simulate a transfer of files within 

the same environment.  

Image 1.7: __NEW_FOLDER__(CrowdStrike) – Malware manipulation 

When a new file is generated on the disk, soon we should have a new entry in a block of 

that disk and in theory the antivirus should take some action (considering that it has the 

real time enabled). 

We could define it as a file manipulation (still not running) where the endpoint protection 

is already necessary, considering that a new directory was created. Soon, we would 

have a new repository with several hashes inside to be examined.

After performing this second test, we saw that the same 32 folders with malwares were 

detected yet. As we can see below and mentioned earlier, these malware were already 

known and validated even in the tool about antivirus scanning known as a Virus Total.

Image 1.8: Malwares – Not Detected

https://www.crowdstrike.com/resources/data-sheets/preventing-malware-beyond/
http://[2] 
http://Virus Total.
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Third Test  

The third stage of the tests was through the use of the FULLSCAN action by Cloud 

CrowdStrike. It was to perform a complete scan on the machine manually. In this way, all 

malware should be eliminated, as they are already known malware as mentioned earlier, 

but in this case, we can’t do this test, i.e, CrowdStrike has a scanless technology.

Spotlight utilizes scanless technology, delivering an always-on, automated vulnerability 

management solution with prioritized data in real time. It eliminates bulky, dated reports 

with its fast, intuitive dashboard. [3]

All surprises forced us to perform an unscheduled test for this stage.

Fourth Test  

The fourth stage of the tests (unscheduled) using “Malware Execution” manually. This 

way, we can look the behavior of these detection engine works in real-time and all 

malware should be eliminated, as they are already known malware as mentioned earlier.

First of all, we executed the snapshot in our lab machine.

We then started the manual execution of some malware chosen at random. 

• First malware known as Cerber and It was BLOCKED (Image 1.10)

• Second malware known as Cryptowall and It was BLOCKED (Image 1.11)

• Third malware known as Mamba and It was BLOCKED (Image 1.12)

Image 1.9: Snapshot

Top to bottom:

Image 1.10

Image 1.11

Image 1.12

http://[3]
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After two more tests using PE (Portable Executable) file, and all those files were 

blocked. Then, we tried to execute a VBS file, (Virtual Basic script written in the VBScript 

language). It contains code that can be executed within Windows or Internet Explorer, via 

the Windows-based script host (Wscript.exe), to perform certain admin and processing 

functions. After 2 minutes we can see that Windows-based script host (Wscript.exe) being 

executed in our machine, and not being blocked by CrowdStrike.

 Image 1.14: VBS Script executing wscript.exe process

Image 1.13: VBS Script Executed

After a while, we can see an alert with the message in Portuguese: “You have files waiting 

to be recorded to disc” as you can see in Image 1.15. When this alert it’s open, we can 

seen in Image 1.16 that there is an ISO media on our machine. There are many files in 

this ISO to be performed and we can find the desktop.ini.Vbs.Vbs as a file done to se 

executed.

Image 1.15: Alert box “You have files waiting to be recorded to disc”

Image 1.16: Alert box “You have files waiting to be recorded to disc”
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After 4 min, it is possible to see in Image 1.17 that there is an infection inside the our 

“victim” machine, all those file were change to extension .Vbs as we see in the ISO 

media. As we can see in Image 1.18, this malware is associated with the execution of VBS 

- Visual Basic Script and he change all extension in the victim environment.

 

Image 1.17: Infection Happening

Image 1.18: Infection complete.

IMPACT

At the end of this test, it was possible to verify that there many malwares that, when 

executed inside the environment, may perform an infection. A few notable points:

• CrowdStrike didn’t work with Signature based; which makes our environment very 

vulnerable.

• Dependency of the real time engines; which may be a risk as noted in our test;

• After the first extraction, no one know malware were detected; when it comes a 

major malware infection we can have several types of attack vectors, so it is very 

important we have an efficient detection.

• Malicious EXE files Not Detected; PE files not detected even though malicious; it 

was not detected.

• Malicious ELF files Not Detected; ELF file not detected even though malicious; In 

our test environment, wouldn’t be dangerous, because our environment it was 

Windows, but should be block but it was not detected.

• After second test no one know malware were detected; After this moviment, no one 

malware it was detected. 

• Infection based on VBS ( Virtual Basic Script) – Known Malware; This is the big 

surprise.

• I-Worm.NewLove  - Worm-type malware, with high criticality, associated with the 

execution of VBS - Visual Basic Script, we have as a characteristic high propagation 

within the environment in which it is executed.

Basic Properties
MD5 95f4156f23d61b1b888d3b3bb87b6d72
SHA-1 09d2470d17821728cd1da95186f5f51272634287
SHA-256 2246a1a31f8ef272a8ac44c97d383d0607d86ddf4509a176b157853d9c6e0028
Vhash 773a411c5a56087d4d7c5cc36bbf2901
SSDEEP 1 5 3 6 : c f Y 1 w B D t r 9 4 P L D c w Z A N v 1 p G 1 Z u Q K 1 0 O k s k /
L1xVCXJW5C6U7EjSRVveO:R1wBJoL4F1w6QK1qFnVCXJYCF7aO

Names
I-Worm.NewLove.zip 
output.149790737.txt;

 

http://I-Worm.NewLove
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CORRECTIVE ACTIONS

The following actions will be taken to improve the protection environment of our assets:

• This report will be sent to CrowdStrike Team to validate how the detection flow for 

known malware works, and why this VBS/Malware wasn’t detected;

• Validate the performance of NGAV, Machine Learning and other components, 

regarding this type of detection;

• The best practices of the configurations will be revalidated with the CrowdStrike 

team. □

Image 1.19:  I-Worm.NewLove – VirusTotal

This could be your 
brand.

Contact us for branding opportunities. 
editorial@hackinthebox.org

mailto:editorial%40hackinthebox.org?subject=Branding%20opp%20with%20HITBMag
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